Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 143: 105983, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32736159

RESUMO

BACKGROUND: The association between air pollution and mortality is well established, yet some uncertainties remain: there are few studies that account for road traffic noise exposure or that consider in detail the shape of the exposure-response function for cause-specific mortality outcomes, especially at low-levels of exposure. OBJECTIVES: We examined the association between long-term exposure to particulate matter [(PM) with a diameter of <2.5 µm (PM2.5), <10 µm (PM10)], and nitrogen dioxide (NO2) and total and cause-specific mortality, accounting for road traffic noise. METHODS: We used data on 24,541 females (age > 44 years) from the Danish Nurse Cohort, who were recruited in 1993 or 1999, and linked to the Danish Causes of Death Register for follow-up on date of death and its cause, until the end of 2013. Annual mean concentrations of PM2.5, PM10, and NO2 at the participants' residences since 1990 were estimated using the Danish DEHM/UBM/AirGIS dispersion model, and annual mean road traffic noise levels (Lden) were estimated using the Nord2000 model. We examined associations between the three-year running mean of PM2.5, PM10, and NO2 with total and cause-specific mortality by using time-varying Cox Regression models, adjusting for individual characteristics and residential road traffic noise. RESULTS: During the study period, 3,708 nurses died: 843 from cardiovascular disease (CVD), 310 from respiratory disease (RD), and 64 from diabetes. In the fully adjusted models, including road traffic noise, we detected associations of three-year running mean of PM2.5 with total (hazard ratio; 95% confidence interval: 1.06; 1.01-1.11), CVD (1.14; 1.03-1.26), and diabetes mortality (1.41; 1.05-1.90), per interquartile range of 4.39 µg/m3. In a subset of the cohort exposed to PM2.5 < 20 µg/m3, we found even stronger association with total (1.19; 1.11-1.27), CVD (1.27; 1.01-1.46), RD (1.27; 1.00-1.60), and diabetes mortality (1.44; 0.83-2.48). We found similar associations with PM10 and none with NO2. All associations were robust to adjustment for road traffic noise. DISCUSSION: Long-term exposure to low-levels of PM2.5 and PM10 is associated with total mortality, and mortality from CVD, RD, and diabetes. Associations were even stronger at the PM2.5 levels below EU limit values and were independent of road traffic noise.

2.
Environ Health ; 19(1): 81, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641060

RESUMO

BACKGROUND: Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. METHODS: We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10-year mean residential outdoor exposure to particulate matter < 2.5 µm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. RESULTS: Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005-1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998-1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053-1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996-1.106) and NOx (OR: 1.051, 95% CI: 0.996-1.110). CONCLUSION: Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed.

3.
Environ Int ; 142: 105891, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593048

RESUMO

Ambient air pollution has been linked to stroke, but few studies have examined in detail stroke subtypes and confounding by road traffic noise, which was recently associated with stroke. Here we examined the association between long-term exposure to air pollution and incidence of stroke (overall, ischemic, hemorrhagic), adjusting for road traffic noise. In a nationwide Danish Nurse Cohort consisting of 23,423 nurses, recruited in 1993 or 1999, we identified 1,078 incident cases of stroke (944 ischemic and 134 hemorrhagic) up to December 31, 2014, defined as first-ever hospital contact. The full residential address histories since 1970 were obtained for each participant and the annual means of air pollutants (particulate matter with diameter < 2.5 µm and < 10 µm (PM2.5 and PM10), nitrogen dioxide (NO2), nitrogen oxides (NOx)) and road traffic noise were determined using validated models. Time-varying Cox regression models were used to estimate hazard ratios (HR) (95% confidence intervals (CI)) for the associations of one-, three, and 23-year running mean of air pollutants with stroke adjusting for potential confounders and noise. In fully adjusted models, the HRs (95% CI) per interquartile range increase in one-year running mean of PM2.5 and overall, ischemic, and hemorrhagic stroke were 1.12 (1.01-1.25), 1.13 (1.01-1.26), and 1.07 (0.80-1.44), respectively, and remained unchanged after adjustment for noise. Long-term exposure to ambient PM2.5 was associated with the risk of stroke independent of road traffic noise.

4.
Environ Res ; 188: 109788, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32562949

RESUMO

Natural environments have been associated with mental health benefits worldwide. However, how different elements and types of natural environments associate with mental health is still largely unknown. In this study, we perform a detailed analysis on a large, nation-wide data set of mental health records (908 553 individuals) for Denmark combined with remotely-sensed land cover and vegetation density data. We explore associations between growing up surrounded by different environments and rates of a spectrum of 18 psychiatric disorders. Childhood land cover exposure for urban, agricultural, near-natural green space, and blue space was determined around the residence of each individual. Vegetation density and air pollution were evaluated as potential pathways. Cox proportional hazards models were used to estimate rates as hazard ratios and then adjusted for potential confounding from other known risk factors. For 12 of 18 disorders, rates were lower for children growing up in environments with more natural elements (near-natural green space, blue space, and agriculture) compared to children growing up in urban environments. High vegetation density was associated with lower rates for most disorders within all the examined environments, whereas mitigation of air pollution by natural environments seemed a less important potential pathway. Rates were not notably changed by adjustment for urbanization, parental and municipal socioeconomic status, family history of mental illness, and parents' age. In conclusion, we found that growing up surrounded by a range of natural environments such as near-natural green space, blue space, and agriculture may lower rates of psychiatric disorders. Our results show the importance of ensuring access to natural environments from as nature-based solutions for improved public health and sustainable, livable cities.

5.
Environ Res ; 188: 109762, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32535359

RESUMO

BACKGROUND: Particulate matter (PM) air pollution is a complex mixture and the various PM constituents likely affect health differently. The literature on the relationships among specific PM constituents and the risk of cancer is sparse. In this study, we aimed to evaluate the association of PM2.5 and its constituents with the incidence of non-Hodgkin lymphoma (NHL) and the two main NHL subtypes. METHODS: We undertook a nationwide register-based case-control study including 20,847 cases registered in the Danish Cancer Registry with NHL between 1989 and 2014. Among the entire Danish population, we selected 41,749 age and sex-matched controls randomly from the Civil Registration System. We assessed modelled outdoor PM concentrations at addresses of cases and controls with a state-of-the-art multi scale air pollution modelling system and used conditional logistic regression to estimate odds ratios (ORs) adjusted for individual and neighborhood level socio-demographic variables. RESULTS: The 10-year time-weighted average concentrations of PM2.5, primary carbonaceous particles (BC/OC), secondary inorganic aerosols (SIA), secondary organic aerosols (SOA) and sea salt were 17.4, 2.3, 7.8, 0.3, and 4.1 µg/m3, respectively among controls. The results showed higher risk for NHL in association with exposure to BC/OC (OR = 1.03; 95% CI: 1.00, 1.07, per interquartile range (IQR)) and SOA (OR = 1.54; 95% CI: 1.13, 2.09, per IQR). The results indicated a higher risk for follicular lymphoma in association with several PM components. Including PM2.5 (OR = 1.16; 95% CI: 0.98-1.38), BC/OC (OR = 1.05; 95% CI: 0.97-1.14), SIA (OR = 1.44; 95% CI: 0.80-1.08), SOA (OR = 4.52; 95% CI: 0.86-23.83) per IQR. CONCLUSION: This is the first study on PM constituents and the risk of NHL. The results indicated an association with primary carbonaceous and secondary organic PM. The results need replication in other settings before any firm conclusion can be reached.

6.
Int J Cancer ; 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175588

RESUMO

There is limited evidence regarding a possible association between exposure to ambient air pollutants and the risk of non-Hodgkin lymphoma (NHL). Previous epidemiological studies have relied on crude estimations for air pollution exposure and/or small numbers of NHL cases. The objective of our study was to analyze this association based on air pollution modeled at the address level and NHL cases identified from the nationwide Danish Cancer Registry. We identified 20,874 incident NHL cases diagnosed between 1989 and 2014 and randomly selected 41,749 controls matched on age and gender among the entire Danish population. We used conditional logistic regression to estimate odds ratios (ORs) and adjusted for individual and neighborhood level sociodemographic variables. There was no association between exposure to PM2.5 , BC, O3 , SO2 or NO2 and overall risk of NHL but several air pollutants were associated with higher risk of follicular lymphoma, but statistically insignificant, for example, PM2.5 (OR = 1.15 per 5 µg/m3 ; 95% CI: 0.98-1.34) and lower risk for diffuse large B-cell lymphoma (OR = 0.92 per 5 µg/m3 ; 95% CI: 0.82-1.03). In this population-based study, we did not observe any convincing evidence of a higher overall risk for NHL with higher exposure to ambient air pollutants.

7.
Lancet Planet Health ; 4(2): e64-e73, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32112749

RESUMO

BACKGROUND: Ambient air pollution affects neurological function, but its association with schizophrenia risk is unclear. We investigated exposure to nitrogen oxides (NOX) as a whole and nitrogen dioxide (NO2) specifically, as well as PM10, and PM2·5, during childhood and subsequent schizophrenia risk. METHODS: People born in Denmark from 1980 to 1984 (N=230 844), who were residing in the country on their tenth birthday, and who had two Danish-born parents were followed-up from their tenth birthday until schizophrenia diagnosis or Dec 31, 2016. Mean daily exposure to each pollutant (NO2, NOX, PM10, and PM2·5) at all of an individual's residential addresses from birth to their tenth birthday was modelled. Incidence rate ratios, cumulative incidence, and population attributable risks were calculated using survival analysis techniques. FINDINGS: We analysed data between Aug 1, 2018, and Nov 15, 2019. Of 230 844 individuals included, 2189 cohort members were diagnosed with schizophrenia during follow-up. Higher concentrations of residential NO2 and NOX exposure during childhood were associated with subsequent elevated schizophrenia risk. People exposed to daily mean concentrations of more than 26·5 µg/m3 NO2 had a 1·62 (95% CI 1·41-1·87) times increased risk compared with people exposed to a mean daily concentration of less than 14·5 µg/m3. The absolute risks of developing schizophrenia by the age of 37 years when exposed to daily mean concentrations of more than 26·5 µg/m3 NO2 between birth and 10 years were 1·45% (95% CI 1·30-1·62%) for men and 1·03% (0·90-1·17) for women, whereas when exposed to a mean daily concentration of less than 14·5 µg/m3, the risk was 0·80% (95% CI 0·69-0·92%) for men and 0·67% (0·57-0·79) for women. Associations between exposure to PM2·5 or PM10 and schizophrenia risk were less consistent. INTERPRETATION: If the association between air pollution and schizophrenia is causal, reducing ambient air pollution including NO2 and NOX could have a potentially considerable effect on lowering schizophrenia incidence at the population level. Further investigations are necessary to establish a causal relationship. FUNDING: Lundbeck Foundation, Stanley Medical Research Institute, European Research Council, NordForsk, Novo Nordisk Foundation, National Health and Medical Research Council, Danish National Research Foundation.

8.
Schizophr Res ; 216: 488-495, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31699630

RESUMO

High exposure to green space and natural environments has previously been associated with lower schizophrenia rates possibly through low air pollution and improved psychological restoration. Exposure to natural environments could explain the negative urban-rural gradient of schizophrenia, but it is unclear if all natural environments are associated with schizophrenia rates. We investigated the association between schizophrenia and growing up surrounded by environments classified as mainly urban, agricultural, near-natural green space, and blue space. Vegetation density and air pollution were assessed as potential pathways. We used the Danish population (943 027 people) and remotely-sensed environmental data to determine land cover exposure and vegetation density around each individual's residence. Effect sizes were estimated using Cox regression and adjusted for air pollution, socioeconomic status, and urbanization. Our results show that growing up surrounded by non-urban environments is associated with lower schizophrenia rates. Firstly, growing up surrounded by non-built-up areas (agricultural areas, near-natural green and blue space) is associated with lower schizophrenia rates compared to urban areas. Secondly, rates decrease with vegetation density in a dose-response relationship for urban and agricultural areas. Air pollution mitigation more strongly explained the protective association in near-natural green spaces, implying that restorative pathways together with air pollution mitigation may explain lower rates in natural environments. This study suggests that ensuring access to natural environments during childhood may be important for schizophrenia prevention, whilst being the first study to show that natural environments may influence schizophrenia rates through multiple pathways.

9.
Environ Res ; 183: 108930, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31810593

RESUMO

BACKGROUND: Exposure to air pollution in early life has been linked to cognitive deficits and adverse neurodevelopmental effects. However, studies examining associations between air pollutants and Attention-Deficit/Hyperactivity Disorder (ADHD) have had conflicting findings. METHODS: Individuals born in Denmark 1992-2007 (n = 809,654) were followed for the development of ADHD from 1997 to 2013. Data on daily concentrations of nitrogen dioxide (NO2) and fine particulate matter (PM2.5) from air-modeling data at a 1 km × 1 km resolution at residences within the first five years of life, was linked with population-based data from the Danish national registers, including data on clinical diagnoses of ADHD. We estimated incidence rate ratios (IRRs) with 95% confidence intervals (CI) for ADHD, according to increases in exposures, adjusting for age, year, sex, and parental education and income. RESULTS: Exposure to NO2 and PM2.5 during early life was associated with a significantly increased risk of ADHD: IRR of 1.38 (Cl: 1.35 to 1.42) per 10 µg/m3 increase in NO2 and an IRR of 1.51 (Cl: 1.41 to 1.62) per 5 µg/m3 increase in PM2.5. In two-pollutant models, the association between NO2 and ADHD did not change (IRR 1.35; 95% CI: 1.31 to 1.39), while the association with PM2.5 was substantially attenuated (IRR 1.07; 95% CI: 0.98 to 1.16), although in stratified models an elevated association with PM2.5 was found in the lowest quintile of NO2 exposure. CONCLUSIONS: In this large nationwide prospective cohort study, residential air pollution exposure, specifically NO2, during early childhood was associated with the development of ADHD, even when adjusted for parental level of income and education.

10.
JAMA Netw Open ; 2(11): e1914401, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675084

RESUMO

Importance: Schizophrenia is a highly heritable psychiatric disorder, and recent studies have suggested that exposure to nitrogen dioxide (NO2) during childhood is associated with an elevated risk of subsequently developing schizophrenia. However, it is not known whether the increased risk associated with NO2 exposure is owing to a greater genetic liability among those exposed to highest NO2 levels. Objective: To examine the associations between childhood NO2 exposure and genetic liability for schizophrenia (as measured by a polygenic risk score), and risk of developing schizophrenia. Design, Setting, and Participants: Population-based cohort study including individuals with schizophrenia (International Statistical Classification of Diseases and Related Health Problems, Tenth Revision code F20) and a randomly selected subcohort. Using national registry data, all individuals born in Denmark between May 1, 1981, and December 31, 2002, were followed up from their 10th birthday until the first occurrence of schizophrenia, emigration, death, or December 31, 2012, whichever came first. Statistical analyses were conducted between October 24, 2018, and June 17, 2019. Exposures: Individual exposure to NO2 during childhood estimated as mean daily exposure to NO2 at residential addresses from birth to the 10th birthday. Polygenic risk scores were calculated as the weighted sum of risk alleles at selected single-nucleotide polymorphisms based on genetic material obtained from dried blood spot samples from the Danish Newborn Screening Biobank and on the Psychiatric Genomics Consortium genome-wide association study summary statistics file. Main Outcomes and Measures: The main outcome was schizophrenia. Weighted Cox proportional hazards regression models were fitted to estimate adjusted hazard ratios (AHRs) for schizophrenia with 95% CIs according to the exposures. Results: Of a total of 23 355 individuals, 11 976 (51.3%) were male and all had Danish-born parents. During the period of the study, 3531 were diagnosed with schizophrenia. Higher polygenic risk scores were correlated with higher childhood NO2 exposure (ρ = 0.0782; 95% CI, 0.065-0.091; P < .001). A 10-µg/m3 increase in childhood daily NO2 exposure (AHR, 1.23; 95% CI, 1.15-1.32) and a 1-SD increase in polygenic risk score (AHR, 1.29; 95% CI, 1.23-1.35) were independently associated with increased schizophrenia risk. Conclusions and Relevance: These findings suggest that the apparent association between NO2 exposure and schizophrenia is only slightly confounded by a higher polygenic risk score for schizophrenia among individuals living in areas with greater NO2. The findings demonstrate the utility of including polygenic risk scores in epidemiologic studies.

11.
Environ Int ; 133(Pt B): 105268, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675564

RESUMO

Studies on health effects of long-term exposure to specific PM2.5 constituents are few. Previous studies have reported an association between black carbon (BC) exposure and cardiovascular diseases (CVD) and a few studies have found an association between sulfate exposure and mortality. These studies, however, relied mainly on exposure data from centrally located air-monitoring stations, which is a crude approximation of personal exposure. We focused on specific chemical constituents of PM2.5, i.e. elemental and primary organic carbonaceous particles (BC/OC), sea salt, secondary inorganic aerosols (SIA, i.e. NO3-, NH4+, and SO42-), and secondary organic aerosols (SOA), in relation to all-cause, CVD and respiratory disease mortality. We followed a Danish cohort of 49,564 individuals from enrollment in 1993-1997 through 2015. We combined residential address history from 1979 onwards with mean annual air pollution concentrations obtained by the AirGIS air pollution modelling system, lifestyle information from baseline questionnaires and socio-demography obtained by register linkage. During 895,897 person-years of follow-up, 10,193 deaths from all causes occurred - of which 2319 were CVD-related and 870 were related to respiratory disease. The 15-year time-weighted average concentrations of PM2.5, BC/OC, sea salt, SIA and SOA were 13.8, 2.8, 3.4, 4.9, and 0.3 µg/m3, respectively. For all-cause mortality, a higher risk was observed with higher exposure to PM2.5, BC/OC and SOA with adjusted hazard ratios of 1.03 (95% confidence intervals: 1.01, 1.05), 1.06 (1.03, 1.09), and 1.08 (1.03, 1.13) per interquartile range, respectively. The associations for BC/OC and SOA remained after adjustment for PM2.5 in two-pollutant models. For CVD mortality, we observed elevated risks with higher exposure to PM2.5, BC/OC and SIA. The results showed no clear relationship between sea salt and mortality. In this study, we observed a relationship between long-term exposure to PM2.5, BC/OC, and SOA and all-cause mortality and between PM2.5, BC/OC, and SIA and CVD mortality.


Assuntos
Poluentes Atmosféricos/toxicidade , Doenças Cardiovasculares/mortalidade , Exposição Ambiental , Material Particulado/toxicidade , Doenças Respiratórias/mortalidade , Fuligem/toxicidade , Poluição do Ar/análise , Estudos de Coortes , Dinamarca , Humanos , Modelos de Riscos Proporcionais
12.
PLoS Biol ; 17(8): e3000353, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31430271

RESUMO

The search for the genetic factors underlying complex neuropsychiatric disorders has proceeded apace in the past decade. Despite some advances in identifying genetic variants associated with psychiatric disorders, most variants have small individual contributions to risk. By contrast, disease risk increase appears to be less subtle for disease-predisposing environmental insults. In this study, we sought to identify associations between environmental pollution and risk of neuropsychiatric disorders. We present exploratory analyses of 2 independent, very large datasets: 151 million unique individuals, represented in a United States insurance claims dataset, and 1.4 million unique individuals documented in Danish national treatment registers. Environmental Protection Agency (EPA) county-level environmental quality indices (EQIs) in the US and individual-level exposure to air pollution in Denmark were used to assess the association between pollution exposure and the risk of neuropsychiatric disorders. These results show that air pollution is significantly associated with increased risk of psychiatric disorders. We hypothesize that pollutants affect the human brain via neuroinflammatory pathways that have also been shown to cause depression-like phenotypes in animal studies.


Assuntos
Poluição Ambiental/efeitos adversos , Transtornos Mentais/etiologia , Poluição do Ar/efeitos adversos , Dinamarca , Exposição Ambiental/efeitos adversos , Poluentes Ambientais , Feminino , Humanos , Masculino , Transtornos Mentais/fisiopatologia , Fatores de Risco , Estados Unidos
13.
Environ Int ; 123: 265-272, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30551059

RESUMO

Air pollutants such as NO2 and PM2.5 have consistently been linked to mortality, but only few previous studies have addressed associations with long-term exposure to black carbon (BC) and ozone (O3). We investigated the association between PM2.5, PM10, BC, NO2, and O3 and mortality in a Danish cohort of 49,564 individuals who were followed up from enrollment in 1993-1997 through 2015. Residential address history from 1979 onwards was combined with air pollution exposure obtained by the state-of-the-art, validated, THOR/AirGIS air pollution modelling system, and information on residential traffic noise exposure, lifestyle and socio-demography. We observed higher risks of all-cause as well as cardiovascular disease (CVD) mortality with higher long-term exposure to PM2.5, PM10, BC, and NO2. For PM2.5 and CVD mortality, a hazard ratio (HR) of 1.29 (95% CI: 1.13-1.47) per 5 µg/m3 was observed, and correspondingly HRs of 1.16 (95% CI: 1.05-1.27) and 1.11 (95% CI: 1.04-1.17) were observed for BC (per 1 µg/m3) and NO2 (per 10 µg/m3), respectively. Adjustment for noise gave slightly lower estimates for the air pollutants and CVD mortality. Inverse relationships were observed for O3. None of the investigated air pollutants were related to risk of respiratory mortality. Stratified analyses suggested that the elevated risks of CVD and all-cause mortality in relation to long-term PM, NO2 and BC exposure were restricted to males. This study supports a role of PM, BC, and NO2 in all-cause and CVD mortality independent of road traffic noise exposure.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Mortalidade , Dióxido de Nitrogênio/toxicidade , Ozônio/toxicidade , Material Particulado/toxicidade , Fuligem/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Doenças Cardiovasculares/mortalidade , Estudos de Coortes , Dinamarca/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ozônio/análise , Tamanho da Partícula , Material Particulado/análise , Modelos de Riscos Proporcionais
14.
Atmos Chem Phys ; 18(14): 10199-10218, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30450115

RESUMO

The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100 × 100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.

15.
Atmos Chem Phys ; 18(8): 5967-5989, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-30079086

RESUMO

The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry-transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by ~ 11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of ~ 1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids ~ 2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.

16.
Atmos Chem Phys ; 18(12): 8929-8952, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147714

RESUMO

In the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3), and as contribution to the second phase of the Hemispheric Transport of Air Pollution (HTAP2) activities for Europe and North America, the impacts of a 20 % decrease of global and regional anthropogenic emissions on surface air pollutant levels in 2010 are simulated by an international community of regional-scale air quality modeling groups, using different state-of-the-art chemistry and transport models (CTMs). The emission perturbations at the global level, as well as over the HTAP2-defined regions of Europe, North America and East Asia, are first simulated by the global Composition Integrated Forecasting System (C-IFS) model from European Centre for Medium-Range Weather Forecasts (ECMWF), which provides boundary conditions to the various regional CTMs participating in AQMEII3. On top of the perturbed boundary conditions, the regional CTMs used the same set of perturbed emissions within the regional domain for the different perturbation scenarios that introduce a 20 % reduction of anthropogenic emissions globally as well as over the HTAP2-defined regions of Europe, North America and East Asia. Results show that the largest impacts over both domains are simulated in response to the global emission perturbation, mainly due to the impact of domestic emission reductions. The responses of NO2, SO2 and PM concentrations to a 20 % anthropogenic emission reduction are almost linear (~ 20 % decrease) within the global perturbation scenario with, however, large differences in the geographical distribution of the effect. NO2, CO and SO2 levels are strongly affected over the emission hot spots. O3 levels generally decrease in all scenarios by up to ~ 1 % over Europe, with increases over the hot spot regions, in particular in the Benelux region, by an increase up to ~ 6 % due to the reduced effect of NOx titration. O3 daily maximum of 8 h running average decreases in all scenarios over Europe, by up to ~ 1 %. Over the North American domain, the central-to-eastern part and the western coast of the US experience the largest response to emission perturbations. Similar but slightly smaller responses are found when domestic emissions are reduced. The impact of intercontinental transport is relatively small over both domains, however, still noticeable particularly close to the boundaries. The impact is noticeable up to a few percent, for the western parts of the North American domain in response to the emission reductions over East Asia. O3 daily maximum of 8 h running average decreases in all scenarios over north Europe by up to ~ 5 %. Much larger reductions are calculated over North America compared to Europe. In addition, values of the Response to Extra-Regional Emission Reductions (RERER) metric have been calculated in order to quantify the differences in the strengths of nonlocal source contributions to different species among the different models. We found large RERER values for O3 (~ 0.8) over both Europe and North America, indicating a large contribution from non-local sources, while for other pollutants including particles, low RERER values reflect a predominant control by local sources. A distinct seasonal variation in the local vs. non-local contributions has been found for both O3 and PM2.5, particularly reflecting the springtime long-range transport to both continents.

17.
Int J Environ Res Public Health ; 12(3): 2837-69, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25749320

RESUMO

Air pollution is an important environmental factor associated with health impacts in Europe and considerable resources are used to reduce exposure to air pollution through emission reductions. These reductions will have non-linear effects on exposure due, e.g., to interactions between climate and atmospheric chemistry. By using an integrated assessment model, we quantify the effect of changes in climate, emissions and population demography on exposure and health impacts in Europe. The sensitivity to the changes is assessed by investigating the differences between the decades 2000-2009, 2050-2059 and 2080-2089. We focus on the number of premature deaths related to atmospheric ozone, Secondary Inorganic Aerosols and primary PM. For the Nordic region we furthermore include a projection on how population exposure might develop due to changes in building stock with increased energy efficiency. Reductions in emissions cause a large significant decrease in mortality, while climate effects on chemistry and emissions only affects premature mortality by a few percent. Changes in population demography lead to a larger relative increase in chronic mortality than the relative increase in population. Finally, the projected changes in building stock and infiltration rates in the Nordic indicate that this factor may be very important for assessments of population exposure in the future.


Assuntos
Aerossóis/efeitos adversos , Mudança Climática , Materiais de Construção/efeitos adversos , Exposição Ambiental/efeitos adversos , Mortalidade Prematura , Ozônio/efeitos adversos , Material Particulado/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Clima , Europa (Continente) , Previsões , Humanos , Modelos Teóricos
18.
Philos Trans R Soc Lond B Biol Sci ; 368(1621): 20130166, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23713128

RESUMO

Existing descriptions of bi-directional ammonia (NH3) land-atmosphere exchange incorporate temperature and moisture controls, and are beginning to be used in regional chemical transport models. However, such models have typically applied simpler emission factors to upscale the main NH3 emission terms. While this approach has successfully simulated the main spatial patterns on local to global scales, it fails to address the environment- and climate-dependence of emissions. To handle these issues, we outline the basis for a new modelling paradigm where both NH3 emissions and deposition are calculated online according to diurnal, seasonal and spatial differences in meteorology. We show how measurements reveal a strong, but complex pattern of climatic dependence, which is increasingly being characterized using ground-based NH3 monitoring and satellite observations, while advances in process-based modelling are illustrated for agricultural and natural sources, including a global application for seabird colonies. A future architecture for NH3 emission-deposition modelling is proposed that integrates the spatio-temporal interactions, and provides the necessary foundation to assess the consequences of climate change. Based on available measurements, a first empirical estimate suggests that 5°C warming would increase emissions by 42 per cent (28-67%). Together with increased anthropogenic activity, global NH3 emissions may increase from 65 (45-85) Tg N in 2008 to reach 132 (89-179) Tg by 2100.


Assuntos
Poluição do Ar/análise , Amônia/química , Atmosfera/análise , Mudança Climática , Clima , Modelos Teóricos , Ciclo do Nitrogênio , Amônia/análise , Animais , Aves , Estados Unidos
19.
Environ Sci Technol ; 42(8): 2943-8, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18497148

RESUMO

A dynamic snowpack module was implemented in the Danish Eulerian Hemispheric Model Persistant Organic Pollutants (DEHM-POP), an atmospheric chemistry-transport model designed to study the environmental fate of persistent organic pollutants in the Northern Hemisphere. The role of the snowpack on the fate of alpha-hexachlorocyclohexane (alpha-HCH) was investigated by making simulations both with and without the formation of a snowpack and comparing model results with data from 21 air monitoring sites. The inclusion of a dynamic snowpack module in the DEHM-POP model generally improves the fit between modeled and observed alpha-HCH air concentrations for the winter and spring seasons and the overall correlation coefficient between predicted and observed concentrations are improved at 8 of the sites. The predicted snowpack concentrations are in good agreement with the few available snow measurements from the Arctic. The presence of a snowpack increases surface boundary layer air concentrations of alpha-HCH at midlatitudes, while the effect is more pronounced in the Arctic due to the longer periods of snow cover. The results indicate that the snowpack module in DEHM-POP acts as a fast-exchanging temporary storage medium for alpha-HCH, as significant fractions were rapidly revolatilized back into the atmosphere following deposition with snowfall, although the current parametrization for vapor-exchange probably over emphasizes this process. Nonetheless, increased air concentrations observed between March and May ("spring maximum events"; SME) at several high latitude monitoring stations are also predicted by the model. The model results indicate that the SMEs are associated with the revolatilization of previously deposited chemical from the snowpack, following a reduction in the capacity of the snowpack to retain alpha-HCH with increasing temperatures toward the end of the winter period, rather than the actual melting of the snowpack. The SMEs are not predicted at all the Arctic monitoring sites by the model, and the significance of the snowpack in controlling these in the model is, therefore, open to question given the uncertainties in the snow-air partition coefficient (K(sa)) and the reliance of the model on a one-layer snowpack rather than a multilayered snowpack.


Assuntos
Poluentes Atmosféricos/análise , Hexaclorocicloexano/análise , Modelos Químicos , Neve , Simulação por Computador
20.
Int J Biometeorol ; 52(6): 453-62, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18095007

RESUMO

Current aerobiological research applies the hypothesis that the main source of atmospheric birch (Betula) pollen is forest trees. Our results indicate that the measured levels in Copenhagen are not only due to birch trees in Danish forests but that the urban areas also seem to be a significant source of birch pollen. A number of episodes in 2003 with enhanced pollen levels in Copenhagen seem to be associated with parks and gardens inside and just outside the city. Our results also indicate one long-range transport episode from remote sources in Poland and Germany. Finally, our results show that the pollen levels vary considerably over the day and geographically between Copenhagen and the city of Roskilde, 40 km away. We suggest, that these differences in time and space in the pollen levels are mapped using an integrated monitoring strategy.


Assuntos
Betula , Pólen , Atmosfera , Ritmo Circadiano , Dinamarca , Modelos Biológicos , Estações do Ano , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA