Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(40): 9941-9944, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30228114

RESUMO

Heat engines, which cyclically transform heat into work, are ubiquitous in technology. Lasers and masers may be viewed as heat engines that rely on population inversion or coherence in the active medium. Here we put forward an unconventional paradigm of a remarkably simple and robust electromagnetic heat-powered engine that bears basic differences to any known maser or laser: The proposed device makes use of only one Raman transition and does not rely on population inversion or coherence in its two-level working medium. Nor does it require any coherent driving. The engine can be powered by the ambient temperature difference between the sky and the ground surface. Its autonomous character and "free" power source make this engine conceptually and technologically enticing.

2.
Nano Lett ; 18(8): 4727-4733, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29923410

RESUMO

Resonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport. In this work, we focus on single-molecule junctions, demonstrating that their mechanical stability during resonant transport can be increased by increasing the bias voltage. This counter-intuitive effect is attributed to the energy dependence of the molecule-lead coupling densities, which promote the rate of transport-induced cooling of molecular vibrations at higher voltages. The required energy dependence is characteristic of realistic electrodes (such as graphene), which cannot be modeled within the commonly invoked wide-band approximation. Our research provides new guidelines for the design of mechanically stable molecular devices operating in the regime of resonant charge transport and demonstrates these guidelines while considering realistic features of single-molecule junctions.

3.
Phys Rev Lett ; 120(17): 170601, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29756824

RESUMO

Quantization of energy is a quintessential characteristic of quantum systems. Here we analyze its effects on the operation of Otto cycle heat machines and show that energy quantization alone may alter and increase machine performance in terms of output work, efficiency, and even operation mode. We show that this difference in performance occurs in machines with inhomogeneous energy level scaling, while quantum machines with homogeneous level scaling behave like classical machines. Our results demonstrate that quantum thermodynamics enables the realization of classically inconceivable Otto machines, such as those with an incompressible working substance. We propose to measure these effects experimentally using a laser-cooled trapped ion as a microscopic heat machine.

4.
J Phys Chem Lett ; 9(7): 1721-1727, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29528650

RESUMO

Modeling nuclear quantum effects is required for accurate molecular dynamics (MD) simulations of molecules. The community has paid special attention to water and other biomolecules that show hydrogen bonding. Standard methods of modeling nuclear quantum effects like Ring Polymer Molecular Dynamics (RPMD) are computationally costlier than running classical trajectories. A force-field functor (FFF) is an alternative method that computes an effective force field that replicates quantum properties of the original force field. In this work, we propose an efficient method of computing FFF using the Wigner-Kirkwood expansion. As a test case, we calculate a range of thermodynamic properties of Neon, obtaining the same level of accuracy as RPMD, but with the shorter runtime of classical simulations. By modifying existing MD programs, the proposed method could be used in the future to increase the efficiency and accuracy of MD simulations involving water and proteins.

5.
Nano Lett ; 18(3): 1600-1607, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29378412

RESUMO

PEDOT: PSS, a transparent electrically conductive polymer, finds widespread use in electronic devices. While empirical efforts have increased conductivity, a detailed understanding of the coupled electronic and morphological landscapes in PEDOT:PSS has lagged due to substantial structural heterogeneity on multiple length-scales. We use an optical microresonator-based absorption spectrometer to perform single-particle measurements, providing a bottom-up examination of electronic structure and morphology ranging from single PEDOT:PSS polymers to nascent films. Using single-particle spectroscopy with complementary theoretical calculations and ultrafast spectroscopy, we demonstrate that PEDOT:PSS displays bulk-like optical response even in single polymers. We find highly ordered PEDOT assemblies with long-range ordering mediated by the insulating PSS matrix and reveal a preferential surface orientation of PEDOT nanocrystallites absent in bulk films with implications for interfacial electronic communication. Our single-particle perspective provides a unique window into the microscopic structure and electronic properties of PEDOT:PSS.

6.
Chem Sci ; 8(2): 1008-1014, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451238

RESUMO

We analyze standard theoretical models of solar energy conversion developed to study solar cells and photosynthetic systems. We show that assuming the energy transfer to the reaction center/electric circuit is through a decay rate or "sink", contradicts the second law of thermodynamics. We put forward a thermodynamically consistent alternative by explicitly considering parts of the reaction center/electric circuit and by employing a Hamiltonian transfer. The predicted energy transfer by the new scheme differs from the one found using a decay rate, casting doubts on the validity of the conclusions obtained by models which include the latter.

7.
Artigo em Inglês | MEDLINE | ID: mdl-26565184

RESUMO

We present the general theory of a quantum heat machine based on an N-level system (working medium) whose N-1 excited levels are degenerate, a prerequisite for steady-state interlevel coherence. Our goal is to find out the extent to which coherence in the working medium is an asset for heat machines. The performance bounds of such a machine are common to (reciprocating) cycles that consist of consecutive strokes and continuous cycles wherein the periodically driven system is constantly coupled to cold and hot heat baths. Intriguingly, we find that the machine's performance strongly depends on the relative orientations of the transition-dipole vectors in the system. Perfectly aligned (parallel) transition dipoles allow for steady-state coherence effects, but also give rise to dark states, which hinder steady-state thermalization and thus reduce the machine's performance. Similar thermodynamic properties hold for N two-level atoms conforming to the Dicke model. We conclude that level degeneracy, but not necessarily coherence, is a thermodynamic resource, equally enhancing the heat currents and the power output of the heat machine. By contrast, the efficiency remains unaltered by this degeneracy and adheres to the Carnot bound.

8.
Sci Rep ; 5: 14413, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26394838

RESUMO

We explore means of maximizing the power output of a heat engine based on a periodically-driven quantum system that is constantly coupled to hot and cold baths. It is shown that the maximal power output of such a heat engine whose "working fluid" is a degenerate V-type three-level system is that generated by two independent two-level systems. Hence, level degeneracy is a thermodynamic resource that may effectively double the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in such multilevel-based heat engines. The existence of two thermalization pathways sharing a common ground state suffices for power enhancement.

9.
J Phys Chem Lett ; 6(17): 3477-82, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26291720

RESUMO

Energy conversion of heat into work at the quantum level is modeled by quantum heat machines (QHMs) generally assumed to operate at weak coupling to the baths. This supposition is grounded in the separability principle between systems and allows the derivation of the evolution equation. In the weak coupling regime, the machine's output is limited by the coupling strength, restricting their application. Seeking to overcome this limitation, we analyze QHMs in the virtually unexplored strong coupling regime here, where separability, as well as other standard thermodynamic assumptions, may no longer hold. We show that strongly coupled QHMs may be as efficient as their weakly coupled counterparts. In addition, we find a novel turnover behavior where their output saturates and disappears in the limit of ultrastrong coupling.

10.
Artigo em Inglês | MEDLINE | ID: mdl-23410296

RESUMO

The recently developed technique combining the weak-coupling limit with the Floquet formalism is applied to a model of a two-level atom driven by a strong laser field and weakly coupled to heat baths. First, the case of a single electromagnetic bath at zero temperature is discussed and the formula for resonance fluorescence is derived. The expression describes the well-known Mollow triplet, but its details differ from the standard ones based on additional simplifying assumptions. The second example describes the case of two thermal reservoirs: an electromagnetic one at finite temperature and the second dephasing one, which can be realized as a phononic or buffer gas reservoir. It is shown using the developed thermodynamical approach that the latter system can work in two regimes depending on the detuning sign: a heat pump transporting heat from the dephasing reservoir to an electromagnetic bath or heating both, always at the expense of work supplied by the laser field.


Assuntos
Lasers , Cadeias de Markov , Modelos Estatísticos , Termodinâmica , Simulação por Computador , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA