Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32202280

RESUMO

A lanthanum(iii) metal-organic framework, PCMOF21-AcO [La2(H2L)1.5(AcO)3·(H2O)5.59], with a 3-D network linked by dicationic bis(dimethylphosphonato)bipiperidinium units and both coordinated and free acetate counter anions is reported. PCMOF21-AcO was water stable and showed very good proton conductivity >10-3 S cm-1 at 85 °C and 95% relative humidity. PCMOF21-AcO also showed a bimodal particle size distribution and so proton conductivity was further examined as a function of particle size. Large (≥220 µm), intermediate (125 ≤ x < 180 µm) and small (<38 µm) particles were sieved and proton conductivity compared. The larger particle samples showed better proton conduction, an observation that supports grain boundaries being a hurdle to proton conduction rather than an enabler (e.g. by degradation routes enabling ion mobility). Proton conductivity as a function of pelletization pressure was also studied and affirmed that, for this system, the single semicircular feature observed in impedance analysis accounted for bulk and grain boundary contributions.

2.
Dalton Trans ; 49(1): 95-101, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31782454

RESUMO

A scandium hydridoborate complex supported by the dianionic pentadentate ligand B2Pz4Py is prepared via hydride abstraction from the previously reported scandium hydride complex with tris-pentafluorophenyl borane. Exposure of [(B2Pz4Py)Sc][HB(C6F5)3] to CO2 immediately forms [(B2Pz4Py)Sc][HCOOB(C6F5)3] at room temperature. The formatoborate complex can also be synthesized directly from the starting material (B2Pz4Py)ScCl with Et3SiH and B(C6F5)3 while in the presence of an atmosphere of CO2 in 81% yield. This compound was evaluated as the transition metal component of a tandem deoxgenative CO2 hydrosilation catalyst. At 5% loadings, complete consumption of Et3SiH was observed along with CO2 reduction products, but conversion to an inactive scandium complex identified as (B2Pz4Py)ScOSiEt3 was observed.

3.
Artigo em Inglês | MEDLINE | ID: mdl-31875332

RESUMO

Benzeneperoxyseleninic acid has been proposed as the key intermediate in the widely used epoxidation of alkenes with benzeneseleninic acid and hydrogen peroxide. However, it reacts sluggishly with cyclooctene and instead rapidly decomposes in solution to a mixed selenonium-selenonate salt that was identified by X-ray absorption and 77 Se NMR spectroscopy, as well as by single crystal X-ray diffraction. This process includes a selenoxide elimination of the peroxyseleninic acid with liberation of oxygen and additional redox steps. The salt is relatively stable in the solid state, but generates the corresponding selenonic acid in the presence of hydrogen peroxide. The selenonic acid is inert towards cyclooctene on its own; however, rapid epoxidation occurs when hydrogen peroxide is added. This shows that the selenonic acid must first be activated through further oxidation, presumably to the heretofore unknown benzeneperoxyselenonic acid. The latter is the principal oxidant in this epoxidation.

4.
Chem Commun (Camb) ; 55(74): 11095-11098, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31460525

RESUMO

The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron-nitrogen doped dihydroindeno[1,2-b]fluorene which can be synthesized using standard Schlenk techniques and worked up and handled readily under atmospheric conditions. Through transmetallation via diarylzinc reagents a series of derivatives were synthesized which show broad visible to near-IR light absorption profiles that highlight the versatility of this BN substituted core for use in optoelectronic devices. The synthesis is efficient, scalable and allows for tuning through changes in substituents on the planar heterocyclic core and at boron. Exploratory evaluation in organic solar cell devices as non-fullerene acceptors gave power conversion efficiencies of 2%.

5.
Inorg Chem ; 58(15): 9874-9881, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31335137

RESUMO

Metal-organic polyhedra (MOPs) are increasingly studied as host-guest capsules, linked into networks, or incorporated into composite materials. As such, understanding the decomposition of MOP structures is of fundamental importance. The degradation of the ubiquitous copper(II) MOP Cu24[5-(hydroxy)isophthalate]24 (1) is studied in liquid water. At different intervals of water exposure, powder X-ray diffraction (PXRD) is performed and stepwise conversion of the MOP into three different coordination polymers is observed. First, the formation of a 2D coordination polymer, 2, is observed, which upon further exposure gives a 1D coordination polymer, 3, and finally a trinuclear copper(II) complex, 4. Compound 2 is characterized by PXRD owing to its transient nature, while 3 and 4 are characterized crystallographically. The final structure, 4, contains copper(II) trimers, and so its magnetic behavior is also investigated.

6.
Chem Commun (Camb) ; 54(100): 14104-14107, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30500002

RESUMO

We report a highly porous 3D metal-organic framework (MOF) that shows potential for coal mine methane (CMM) capture.

7.
Dalton Trans ; 47(38): 13680-13688, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30209501

RESUMO

Alkyl and hydrido scandium complexes of the dianionic pentadentate ligand B2Pz4Py are reported. The key starting material (B2Pz4Py)ScCl is readily prepared and alkylated with organolithium reagents RLi (R = CH3, CH2SiMe3, CH2SiMe2Ph, CH2CH2CH3 and CH2CHMe2) to form alkyl derivatives in 61-93% yields. These compounds are very thermally stable and do not undergo sigma bond metathesis reactions with dihydrogen. The hydrido complex was prepared from (B2Pz4Py)ScCl and NaHBEt3 in 80% yield and was found to be more stable by 28 kcal mol-1 as a dimer, rather than a monomeric hydrido complex. However, the monomer is accessible through dissociation of the dimer at 80 °C. All of the compounds (B2Pz4Py)ScR react with water to form the bridging oxo dimer (B2Pz4Py)ScOSc(B2Pz4Py). The reactivity of the hydrido and methyl complexes towards carbon dioxide was explored; heating to 80 °C results in the formation of κ2 formato and acetate complexes, respectively. The mechanisms were studied via density functional theory and distinct transition states for insertion of CO2 into the Sc-R (R = H, CH3) were found, with the insertion into Sc-CH3 being more enthalpically difficult (by 18 kcal mol-1) than insertion into Sc-H. The slow rate of reaction between [(B2Pz4Py)ScH]2 and CO2 is attributed to the barrier associated with dimer dissociation. In both insertion reactions, the kinetic products are κ1 formato or acetate complexes that are only slightly less stable than the observed κ2 derivatives. The κ1 compounds can therefore be trapped by treating the κ2 isomers with tris-pentafluorophenyl borane.

8.
Inorg Chem ; 57(20): 12787-12799, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30247895

RESUMO

The reaction between antitumor active dirhodium(II) tetraacetate and dl-methionine (HMet) was followed in aqueous solution and showed initially mixtures of 1:1 and 1:2 adducts [Rh2(AcO)4(HMet)(H2O)] (AcO- = CH3COO-) and [Rh2(AcO)4(HMet)2] formed at room temperature (RT), as evidenced by UV-vis spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Rh K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy confirmed methionine thioether binding to the axial positions of the Rh2(AcO)4 cage structure. With excess HMet at RT, stepwise displacement of the acetate groups was observed after some time using ESI-MS. Heating the solution to 40° for 24 h accelerated the substitution reaction leading to stable dirhodium(II) species with two acetate ligands displaced by two methionine groups. The crystal structure of the purple [RhII2(AcO)2(d-Met)(l-Met)]·6H2O compound obtained from the solution revealed tridentate coordination of the methionine ligands to the Rh(II) ions, with the thioether S atoms in equatorial positions. A minor amount of a light orange monomeric [RhIII(Met)2](AcO) complex also formed in the solution was isolated by size exclusion chromatography and identified by ESI-MS. Crystals of [RhIII(d-Met)(l-Met)]Cl·3H2O were prepared by reacting RhCl3 and dl-HMet. The crystal structure showed tridentate binding of the methionine ligands to the Rh(III) ion in a trans-S, N, O arrangement.

9.
Chemistry ; 24(7): 1533-1538, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29336090

RESUMO

By complexing a bent phosphonate monoester ligand with cobalt(II), coupled with in situ ester hydrolysis, coordination microspheres (CALS=CALgary Sphere) are formed whereas the use of the phosphonic acid directly resulted in a sheet-like structure. Manipulation of the synthetic conditions gave spheres with different sizes, mechanical stabilities, and porosities. Time-dependent studies determined that the sphere formation likely occurred through the formation of a Co2+ and ligand chain that propagates in three dimensions through different sets of interactions. The relative rates of these assembly processes versus annealing by ester hydrolysis and metal dehydration determine the growth of the microspheres. Hardness testing by nanoindentation is carried out on the spheres and sheets. Notably, no templates or capping agents are employed, the growth of the spheres is intrinsic to the ligand geometry and the coordination chemistry of cobalt(II) and the phosphonate monoester.

10.
J Am Chem Soc ; 140(3): 1077-1082, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29272575

RESUMO

Two complementary design strategies, isomorphous ligand replacement and heterocycle doping, have been applied to iteratively enhance the proton conductivity of a metal-organic framework, ß-PCMOF2. The resulting materials, PCMOF21/2(Pz) and PCMOF21/2(Tz) (Pz = 1H-pyrazole, Tz = 1H-1,2,4-triazole), have their proton conduction raised almost 2 orders of magnitude compared to ß-PCMOF2. The bulk conductivities of these materials are over 10-1 S cm-1 at 85 °C and 90% relative humidity (RH), while maintaining the parent MOF structure. A solid state synthetic route for doping 1-D channels is also presented.

11.
J Am Chem Soc ; 139(41): 14676-14683, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-28953403

RESUMO

Seven isomorphous lanthanide metal-organic frameworks in the PCMOF-5 family, [Ln(H5L)(H2O)n](H2O) (L = 1,2,4,5-tetrakis(phosphonomethyl)benzene, Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) have been synthesized and characterized. This family contains 1-D water-filled channels lined with free hydrogen phosphonate groups and gives a very low activation energy pathway for proton transfer. The lanthanide contraction was employed to systematically vary the unit cell dimensions and tune the proton conducting pathways. LeBail fitting of the crystalline series shows that the crystallographic a-axis, along the channel, can be varied in increments less than 0.02 Å correspondingly shortening the proton transfer pathway. The proton conductivities for the La and Pr complexes were roughly an order of magnitude higher than other members of the series (10-3 S cm-1 versus 10-4 S cm-1). Single crystal structures of the high and low conducting members of the series (La, Pr for high and Ce for low) affirm the structural similarities extend beyond the unit cell parameters to positions of free acid groups and included water molecules. Scanning electron microscopy reveals marked differences in particle size of the different members of the Ln series owing to lattice strain effects induced by changing the lanthanide. Notably, the high conducting La and Pr complexes have the largest particle sizes. This result contradicts any notion that degradation of the MOF at grain boundaries is enabling the observed conductivity as proton conduction dominated by extrinsic pathways would be enabled by small particles (i.e., the La and Pr complexes would be the worst conductors). Proton conductivity measurements of a ball milled sample of the La complex corroborate this result.

12.
Angew Chem Int Ed Engl ; 55(47): 14614-14617, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27766722

RESUMO

A crystalline and permanently porous copper phosphonate monoester framework has been synthesized from a tetraaryl trigonal phosphonate monoester linker. This material has a surface area over 1000 m2 g-1 , as measured by N2 sorption, the highest reported for a phosphonate-based metal-organic framework (MOF). The monoesters result in hydrophobic pore surfaces that give a low heat of adsorption for CO2 and low calculated selectivity for CO2 over N2 and CH4 in binary mixtures. By careful manipulation of synthetic conditions, it is possible to selectively remove some of the monoesters lining the pore to form a hydrogen phosphonate while giving an isomorphous structure. This increases the affinity of the framework for CO2 giving higher ambient uptake, higher heat of adsorption, and much higher calculated selectivity for CO2 over both N2 and CH4 . Formation of the acid groups is noteworthy as complexation with the parent acid gives a different structure.

13.
Angew Chem Int Ed Engl ; 55(10): 3481-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833592

RESUMO

A new, highly adaptable type of phosphinamide-based hydrogen bonding is representatively demonstrated in π-conjugated phosphole materials. The rotational flexibility of these intermolecular P=O-H-N hydrogen bonds is demonstrated by X-ray crystallography and variable-concentration NMR spectroscopy. In addition to crystalline compounds, phosphinamide hydrogen bonding was successfully introduced into the self-assembly of soft crystals, liquid crystals, and organogels, thus highlighting the high general value of this type of interaction for the formation of organic soft materials.

14.
Dalton Trans ; 45(9): 3668-78, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26645642

RESUMO

Metal-organic frameworks (MOFs) are a class of porous solid, which have a variety of potential applications. Unfortunately, MOFs often lack hydrolytic stability, which hinders their use as viable materials for large scale applications. Though there have been an increasing number of reports proving water stability, this aspect is often ignored and negative results often remain unpublished. As a result, this report has been produced to offer common benchmarks for stability of MOFs to moisture. This will be done by discussing what water stability means--both with regards to the exposure methods and the means of assessing the MOF after exposure. Based on these two criteria, definitions are proposed in order to allow MOFs to be discussed more consistently. The purpose of this report is not to rank existing MOFs based on water stability or for potential application but to promote and facilitate discussion about hydrolytic stability of MOFs.

15.
J Am Chem Soc ; 137(24): 7640-3, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26053659

RESUMO

From the outset of the study of MOFs as proton conductors, both conductivity and hydrolytic robustness of the materials have needed to be improved. Here, we report a layered magnesium carboxyphosphonate framework, PCMOF10, that shows an extremely high proton conductivity value of 3.55 × 10(-2) S·cm(-1) at 70 °C and 95% RH. Moreover, PCMOF10 is water stable owing to strong Mg phosphonate bonding. The 2,5-dicarboxy-1,4-benzenediphosphonic acid (H6L) linker anchors a robust backbone and has hydrogen phosphonate groups that interact with the lattice water to form an efficient proton transfer pathway.

16.
Inorg Chem ; 54(4): 1185-7, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25646642

RESUMO

Phosphonate monoesters are atypical linkers for metal-organic frameworks, but they offer potentially added versatility. In this work, a bulky isopropyl ester is used to direct the topology of a copper(II) network from a dense to an open framework, CALF-30. CALF-30 shows no adsorption of N2 or CH4 however, using CO2 sorption, CALF-30 was found to have a Langmuir surface area of over 300 m(2)/g and to be stable to conditions of 90% relative humidity at 353 K owing to kinetic shielding of the framework by the phosphonate ester.

17.
J Am Chem Soc ; 135(3): 963-6, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23286895

RESUMO

Using the concept of isomorphous replacement applied to entire ligands, a C(3)-symmetric trisulfonate ligand was substituted with a C(3)-symmetric tris(hydrogen phosphonate) ligand in a proton conducting metal-organic framework (MOF). The resulting material, PCMOF2½, has its proton conduction raised 1.5 orders of magnitude compared to the parent material, to 2.1 × 10(-2) S cm(-1) at 90% relative humidity and 85 °C, while maintaining the parent MOF structure.


Assuntos
Compostos Organometálicos/química , Prótons , Ligantes , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA