Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Filtros adicionais











Tipo de estudo
Intervalo de ano
1.
Arch Dis Child ; 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484632

RESUMO

PURPOSE: Individuals with X-linked myotubular myopathy (XLMTM) who survive infancy require extensive supportive care, including ventilator assistance, wheelchairs and feeding tubes. Half die before 18 months of age. We explored respiratory support and associated mortality risk in RECENSUS, particularly among patients ≤5 years old who received respiratory support at birth; this subgroup closely matches patients in the ASPIRO trial of gene therapy for XLMTM. DESIGN: RECENSUS is an international, retrospective study of patients with XLMTM. Descriptive and time-to-event analyses examined survival on the basis of age, respiratory support, tracheostomy use, predicted mutational effects and life-sustaining care. RESULTS: Outcomes for 145 patients were evaluated. Among 126 patients with respiratory support at birth, mortality was 47% overall and 59% among those ≤5 years old. Median survival time was shorter for patients ≤5 years old than for those >5 years old (2.2 years (IQR 0.7-5.6) vs 30.2 years (IQR 19.4-30.2)). The most common cause of death was respiratory failure (66.7%). Median survival time was longer for patients with a tracheostomy than for those without (22.8 years (IQR 8.7-30.2) vs 1.8 years (IQR 0.2-not estimable)). The proportion of patients living without a tracheostomy was 50% at age 6 months and 28% at age 2 years. Median survival time was longer with provision of life-sustaining care than without (19.4 years (IQR 3.1-not estimable) vs 0.2 years (IQR 0.1-2.1)). CONCLUSIONS: High mortality, principally due to respiratory failure, among patients with XLMTM ≤5 years old despite respiratory support underscores the need for early diagnosis, informed decision-making and disease-modifying therapies. TRIAL REGISTRATION NUMBER: NCT02231697.

2.
J Perinatol ; 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395954

RESUMO

OBJECTIVE: To determine the proportion of infant deaths occurring in the setting of a confirmed genetic disorder. STUDY DESIGN: A retrospective analysis of the electronic medical records of infants born from 1 January, 2011 to 1 June, 2017, who died prior to 1 year of age. RESULTS: Five hundred and seventy three deceased infants were identified. One hundred and seventeen were confirmed to have a molecular or cytogenetic diagnosis in a clinical diagnostic laboratory and an additional seven were diagnosed by research testing for a total of 124/573 (22%) diagnosed infants. A total of 67/124 (54%) had chromosomal disorders and 58/124 (47%) had single gene disorders (one infant had both). The proportion of diagnoses made by sequencing technologies, such as exome sequencing, increased over the years. CONCLUSIONS: The prevalence of confirmed genetic disorders within our cohort of infant deaths is higher than that previously reported. Increased efforts are needed to further understand the mortality burden of genetic disorders in infancy.

3.
Eur J Hum Genet ; 27(9): 1398-1405, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30979967

RESUMO

Clinical exome sequencing (CES) is increasingly being utilized; however, a large proportion of patients remain undiagnosed, creating a need for a systematic approach to increase the diagnostic yield. We have reanalyzed CES data for a clinically heterogeneous cohort of 102 probands with likely Mendelian conditions, including 74 negative cases and 28 cases with candidate variants, but reanalysis requested by clinicians. Reanalysis was performed by an interdisciplinary team using a validated custom-built pipeline, "Variant Explorer Pipeline" (VExP). This reanalysis approach and results were compared with existing literature. Reanalysis of candidate variants from CES in 28 cases revealed 1 interpretation that needed to be reclassified. A confirmed or potential genetic diagnosis was identified in 24 of 75 CES-negative/reclassified cases (32.0%), including variants in known disease-causing genes (n = 6) or candidate genes (n = 18). This yield was higher compared with similar studies demonstrating the utility of this approach. In summary, reanalysis of negative CES in a research setting enhances diagnostic yield by about a third. This study suggests the need for comprehensive, continued reanalysis of exome data when molecular diagnosis is elusive.

4.
Hum Mutat ; 40(7): 962-974, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30932294

RESUMO

Congenital myopathies are early onset, slowly progressive neuromuscular disorders of variable severity. They are genetically and phenotypically heterogeneous and caused by pathogenic variants in several genes. Multi-minicore Disease, one of the more common congenital myopathies, is frequently caused by recessive variants in either SELENON, encoding the endoplasmic reticulum glycoprotein selenoprotein N or RYR1, encoding a protein involved in calcium homeostasis and excitation-contraction coupling. The mechanism by which recessive SELENON variants cause Multiminicore disease (MmD) is unclear. Here, we extensively investigated muscle physiological, biochemical and epigenetic modifications, including DNA methylation, histone modification, and noncoding RNA expression, to understand the pathomechanism of MmD. We identified biochemical changes that are common in patients harboring recessive RYR1 and SELENON variants, including depletion of transcripts encoding proteins involved in skeletal muscle calcium homeostasis, increased levels of Class II histone deacetylases (HDACs) and DNA methyltransferases. CpG methylation analysis of genomic DNA of patients with RYR1 and SELENON variants identified >3,500 common aberrantly methylated genes, many of which are involved in calcium signaling. These results provide the proof of concept for the potential use of drugs targeting HDACs and DNA methyltransferases to treat patients with specific forms of congenital myopathies.

6.
Am J Hum Genet ; 104(1): 76-93, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30609409

RESUMO

Genomic sequencing provides many opportunities in newborn clinical care, but the challenges of interpreting and reporting newborn genomic sequencing (nGS) results need to be addressed for its broader and effective application. The BabySeq Project is a pilot randomized clinical trial that explores the medical, behavioral, and economic impacts of nGS in well newborns and those admitted to a neonatal intensive care unit (NICU). Here we present childhood-onset and actionable adult-onset disease risk, carrier status, and pharmacogenomics findings from nGS of 159 newborns in the BabySeq Project. nGS revealed a risk of childhood-onset disease in 15/159 (9.4%) newborns; none of the disease risks were anticipated based on the infants' known clinical or family histories. nGS also revealed actionable adult-onset disease risk in 3/85 (3.5%) newborns whose parents consented to receive this information. Carrier status for recessive diseases and pharmacogenomics variants were reported in 88% and 5% of newborns, respectively. Additional indication-based analyses were performed in 29/32 (91%) NICU newborns and 6/127 (5%) healthy newborns who later had presentations that prompted a diagnostic analysis. No variants that sufficiently explained the reason for the indications were identified; however, suspicious but uncertain results were reported in five newborns. Testing parental samples contributed to the interpretation and reporting of results in 13/159 (8%) newborns. Our results suggest that nGS can effectively detect risk and carrier status for a wide range of disorders that are not detectable by current newborn screening assays or predicted based on the infant's known clinical or family history, and the interpretation of results can substantially benefit from parental testing.

7.
Pediatrics ; 143(Suppl 1): S27-S32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600268

RESUMO

The authors of current professional guidelines generally do not support the return of information about genetic carrier status for infants and children because of a perceived lack of immediate benefit and an abundance of caution regarding potential harm and desire to protect the children's future autonomy. The advent of genomic sequencing, used either as a diagnostic or a screening tool, and the increasing use of this technology in childhood creates the potential for the identification of carrier status in the pediatric period. As part of the BabySeq Project, researchers are exploring the implications of genomic sequencing in both newborns who are healthy and newborns who are sick and developing policies and procedures for the return of carrier status information to the parents and physicians of newborns. In this commentary, we review the history of carrier testing in children and explore the potential benefits, risks, and challenges of returning such results both for the children, their parents, and potential future siblings.

8.
Genet Med ; 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30514889

RESUMO

PURPOSE: Diagnosing monogenic diseases facilitates optimal care, but can involve the manual evaluation of hundreds of genetic variants per case. Computational tools like Phrank expedite this process by ranking all candidate genes by their ability to explain the patient's phenotypes. To use these tools, busy clinicians must manually encode patient phenotypes from lengthy clinical notes. With 100 million human genomes estimated to be sequenced by 2025, a fast alternative to manual phenotype extraction from clinical notes will become necessary. METHODS: We introduce ClinPhen, a fast, high-accuracy tool that automatically converts clinical notes into a prioritized list of patient phenotypes using Human Phenotype Ontology (HPO) terms. RESULTS: ClinPhen shows superior accuracy and 20× speedup over existing phenotype extractors, and its novel phenotype prioritization scheme improves the performance of gene-ranking tools. CONCLUSION: While a dedicated clinician can process 200 patient records in a 40-hour workweek, ClinPhen does the same in 10 minutes. Compared with manual phenotype extraction, ClinPhen saves an additional 3-5 hours per Mendelian disease diagnosis. Providers can now add ClinPhen's output to each summary note attached to a filled testing laboratory request form. ClinPhen makes a substantial contribution to improvements in efficiency critically needed to meet the surging demand for clinical diagnostic sequencing.

9.
Am J Hum Genet ; 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30503522

RESUMO

Diamond-Blackfan anemia (DBA) is a rare bone marrow failure disorder that affects 7 out of 1,000,000 live births and has been associated with mutations in components of the ribosome. In order to characterize the genetic landscape of this heterogeneous disorder, we recruited a cohort of 472 individuals with a clinical diagnosis of DBA and performed whole-exome sequencing (WES). We identified relevant rare and predicted damaging mutations for 78% of individuals. The majority of mutations were singletons, absent from population databases, predicted to cause loss of function, and located in 1 of 19 previously reported ribosomal protein (RP)-encoding genes. Using exon coverage estimates, we identified and validated 31 deletions in RP genes. We also observed an enrichment for extended splice site mutations and validated their diverse effects using RNA sequencing in cell lines obtained from individuals with DBA. Leveraging the size of our cohort, we observed robust genotype-phenotype associations with congenital abnormalities and treatment outcomes. We further identified rare mutations in seven previously unreported RP genes that may cause DBA, as well as several distinct disorders that appear to phenocopy DBA, including nine individuals with biallelic CECR1 mutations that result in deficiency of ADA2. However, no new genes were identified at exome-wide significance, suggesting that there are no unidentified genes containing mutations readily identified by WES that explain >5% of DBA-affected case subjects. Overall, this report should inform not only clinical practice for DBA-affected individuals, but also the design and analysis of rare variant studies for heterogeneous Mendelian disorders.

10.
BMC Med Genet ; 19(1): 197, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30424743

RESUMO

BACKGROUND: TRRAP encodes a multidomain protein kinase that works as a genetic cofactor to influence DNA methylation patterns, DNA damage repair, and chromatin remodeling. TRRAP protein is vital to early neural developmental processes, and variants in this gene have been associated with schizophrenia and childhood disintegrative disorder. CASE PRESENTATION: Here, we report on a patient with a de novo nonsynonymous TRRAP single-nucleotide variant (EST00000355540.3:c.5957G > A, p.Arg1986Gln) and early onset major depression accompanied by a psychotic episode (before age 10) that occurred in the context of longer standing nonverbal learning disability and a past history of obsessions and compulsions. CONCLUSIONS: The de novo variant and presentation of very early onset psychosis indicate a rare Mendelian disorder inheritance model. The genotype and behavioral abnormalities of this patient are reviewed.

11.
Genet Med ; 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30209271

RESUMO

PURPOSE: Newborn genomic sequencing (nGS) has great potential to improve pediatric care. Parental interest and concerns about genomics are relatively unexplored. Understanding why parents decline research consent for nGS may reveal implementation barriers. METHODS: We evaluated parental interest in a randomized trial of nGS in well-baby and intensive care unit nursery settings. Interested families attended an informational enrollment session (ES) with a genetic counselor prior to consenting. Reason(s) for declining participation and sociodemographic associations were analyzed. RESULTS: Of 3860 eligible approached families, 10% attended ES, 67% of whom enrolled. Of 1760 families queried for decline reasons, 58% were uninterested in research. Among 499 families considering research, principal reasons for decline prior to ES included burdensome study logistics (48%), feeling overwhelmed postpartum (17%), and lack of interest/discomfort with genetic testing (17%). Decliners after ES more often cited concerns about privacy/insurability (41%) and uncertain/unfavorable results (23%). CONCLUSION: Low interest in research and study logistics were major initial barriers to postpartum enrollment and are likely generic to many postpartum research efforts. Concerns over privacy and result implications were most commonly cited in decliners after ES. Understanding parental concerns around research nGS may inform future integration of nGS into newborn screening, predictive testing, and pediatric diagnostics.

12.
Brain ; 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985992

RESUMO

The transcription factor BCL11B is essential for development of the nervous and the immune system, and Bcl11b deficiency results in structural brain defects, reduced learning capacity, and impaired immune cell development in mice. However, the precise role of BCL11B in humans is largely unexplored, except for a single patient with a BCL11B missense mutation, affected by multisystem anomalies and profound immune deficiency. Using massively parallel sequencing we identified 13 patients bearing heterozygous germline alterations in BCL11B. Notably, all of them are affected by global developmental delay with speech impairment and intellectual disability; however, none displayed overt clinical signs of immune deficiency. Six frameshift mutations, two nonsense mutations, one missense mutation, and two chromosomal rearrangements resulting in diminished BCL11B expression, arose de novo. A further frameshift mutation was transmitted from a similarly affected mother. Interestingly, the most severely affected patient harbours a missense mutation within a zinc-finger domain of BCL11B, probably affecting the DNA-binding structural interface, similar to the recently published patient. Furthermore, the most C-terminally located premature termination codon mutation fails to rescue the progenitor cell proliferation defect in hippocampal slice cultures from Bcl11b-deficient mice. Concerning the role of BCL11B in the immune system, extensive immune phenotyping of our patients revealed alterations in the T cell compartment and lack of peripheral type 2 innate lymphoid cells (ILC2s), consistent with the findings described in Bcl11b-deficient mice. Unsupervised analysis of 102 T lymphocyte subpopulations showed that the patients clearly cluster apart from healthy children, further supporting the common aetiology of the disorder. Taken together, we show here that mutations leading either to BCL11B haploinsufficiency or to a truncated BCL11B protein clinically cause a non-syndromic neurodevelopmental delay. In addition, we suggest that missense mutations affecting specific sites within zinc-finger domains might result in distinct and more severe clinical outcomes.

13.
BMC Pediatr ; 18(1): 225, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986673

RESUMO

BACKGROUND: The greatest opportunity for lifelong impact of genomic sequencing is during the newborn period. The "BabySeq Project" is a randomized trial that explores the medical, behavioral, and economic impacts of integrating genomic sequencing into the care of healthy and sick newborns. METHODS: Families of newborns are enrolled from Boston Children's Hospital and Brigham and Women's Hospital nurseries, and half are randomized to receive genomic sequencing and a report that includes monogenic disease variants, recessive carrier variants for childhood onset or actionable disorders, and pharmacogenomic variants. All families participate in a disclosure session, which includes the return of results for those in the sequencing arm. Outcomes are collected through review of medical records and surveys of parents and health care providers and include the rationale for choice of genes and variants to report; what genomic data adds to the medical management of sick and healthy babies; and the medical, behavioral, and economic impacts of integrating genomic sequencing into the care of healthy and sick newborns. DISCUSSION: The BabySeq Project will provide empirical data about the risks, benefits and costs of newborn genomic sequencing and will inform policy decisions related to universal genomic screening of newborns. TRIAL REGISTRATION: The study is registered in ClinicalTrials.gov Identifier: NCT02422511 . Registration date: 10 April 2015.

14.
Genet Med ; 20(11): 1396-1404, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29790870

RESUMO

PURPOSE: Infants admitted to a level IV neonatal intensive care unit (NICU) who do not survive early childhood are a population that is probably enriched for rare genetic disease; we therefore characterized their genetic diagnostic evaluation. METHODS: This is a retrospective analysis of infants admitted to our NICU between 1 January 2011 and 31 December 2015 who were deceased at the time of records review, with age at death less than 5 years. RESULTS: A total of 2,670 infants were admitted; 170 later died. One hundred six of 170 (62%) had an evaluation for a genetic or metabolic disorder. Forty-seven of 170 (28%) had laboratory-confirmed genetic diagnoses, although 14/47 (30%) diagnoses were made postmortem. Infants evaluated for a genetic disorder spent more time in the NICU (median 13.5 vs. 5.0 days; p = 0.003), were older at death (median 92.0 vs. 17.5 days; p < 0.001), and had similarly high rates of redirection of care (86% vs. 79%; p = 0.28). CONCLUSION: Genetic disorders were suspected in many infants but found in a minority. Approximately one-third of diagnosed infants died before a laboratory-confirmed genetic diagnosis was made. This highlights the need to improve genetic diagnostic evaluation in the NICU, particularly to support end-of-life decision making.

15.
Artigo em Inglês | MEDLINE | ID: mdl-29728376

RESUMO

Here, we report a newborn female infant from the well-baby cohort of the BabySeq Project who was identified with compound heterozygous BTD gene variants. The two identified variants included a well-established pathogenic variant (c.1612C>T, p.Arg538Cys) that causes profound biotinidase deficiency (BTD) in homozygosity. In addition, a novel splice variant (c.44+1G>A, p.?) was identified in the invariant splice donor region of intron 1, potentially predictive of loss of function. The novel variant was predicted to impact splicing of exon 1; however, given the absence of any reported pathogenic variants in exon 1 and the presence of alternative splicing with exon 1 absent in most tissues in the GTEx database, we assigned an initial classification of uncertain significance. Follow-up medical record review of state-mandated newborn screen (NBS) results revealed an initial out-of-range biotinidase activity level. Levels from a repeat NBS sample barely passed cutoff into the normal range. To determine whether the infant was biotinidase-deficient, subsequent diagnostic enzyme activity testing was performed, confirming partial BTD, and resulted in a change of management for this patient. This led to reclassification of the novel splice variant based on these results. In conclusion, combining the genetic and NBS results together prompted clinical follow-up that confirmed partial BTD and informed this novel splice site's reclassification, emphasizing the importance of combining iterative genetic and phenotypic evaluations.

16.
Ann Neurol ; 83(6): 1105-1124, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29691892

RESUMO

OBJECTIVE: Comprehensive clinical characterization of congenital titinopathy to facilitate diagnosis and management of this important emerging disorder. METHODS: Using massively parallel sequencing we identified 30 patients from 27 families with 2 pathogenic nonsense, frameshift and/or splice site TTN mutations in trans. We then undertook a detailed analysis of the clinical, histopathological and imaging features of these patients. RESULTS: All patients had prenatal or early onset hypotonia and/or congenital contractures. None had ophthalmoplegia. Scoliosis and respiratory insufficiency typically developed early and progressed rapidly, whereas limb weakness was often slowly progressive, and usually did not prevent independent walking. Cardiac involvement was present in 46% of patients. Relatives of 2 patients had dilated cardiomyopathy. Creatine kinase levels were normal to moderately elevated. Increased fiber size variation, internalized nuclei and cores were common histopathological abnormalities. Cap-like regions, whorled or ring fibers, and mitochondrial accumulations were also observed. Muscle magnetic resonance imaging showed gluteal, hamstring and calf muscle involvement. Western blot analysis showed a near-normal sized titin protein in all samples. The presence of 2 mutations predicted to impact both N2BA and N2B cardiac isoforms appeared to be associated with greatest risk of cardiac involvement. One-third of patients had 1 mutation predicted to impact exons present in fetal skeletal muscle, but not included within the mature skeletal muscle isoform transcript. This strongly suggests developmental isoforms are involved in the pathogenesis of this congenital/early onset disorder. INTERPRETATION: This detailed clinical reference dataset will greatly facilitate diagnostic confirmation and management of patients, and has provided important insights into disease pathogenesis. Ann Neurol 2018;83:1105-1124.

17.
Mol Genet Metab ; 123(3): 317-325, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29279279

RESUMO

Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth. Tone is abnormal with axial hypotonia and progressive appendicular spasticity. Hyperekplexia has been reported. Neuroimaging typically demonstrates gyral simplification, abnormal myelination, and progressive cerebral atrophy. The present report describes two siblings from consanguineous parents with a homozygous Arg49Gln variant associated with a milder form of ASD that is characterized by later onset of symptoms. Both siblings had a period of normal development before onset of seizures, and development regression. Primary fibroblast studies of the siblings and their parents document that homozygosity for Arg49Gln blocks cell growth in the absence of extracellular asparagine. Functional studies with these cells suggest no impact of the Arg49Gln variant on basal ASNS mRNA or protein levels, nor on regulation of the gene itself. Molecular modelling of the ASNS protein structure indicates that the Arg49Gln variant lies near the substrate binding site for glutamine. Collectively, the results suggest that the Arg49Gln variant affects the enzymatic function of ASNS. The clinical, cellular, and molecular observations from these siblings expand the known phenotypic spectrum of ASD.

18.
JIMD Rep ; 39: 45-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28726122

RESUMO

Beta-ketothiolase (mitochondrial acetoacetyl-CoA thiolase) deficiency is a genetic disorder characterized by impaired isoleucine catabolism and ketone body utilization that predisposes to episodic ketoacidosis. It results from biallelic pathogenic variants in the ACAT1 gene, encoding mitochondrial beta-ketothiolase. We report two cases of beta-ketothiolase deficiency presenting with acute ketoacidosis and "metabolic stroke." The first patient presented at 28 months of age with metabolic acidosis and pallidal stroke in the setting of a febrile gastrointestinal illness. Although 2-methyl-3-hydroxybutyric acid and trace quantities of tiglylglycine were present in urine, a diagnosis of glutaric acidemia type I was initially suspected due to the presence of glutaric and 3-hydroxyglutaric acids. A diagnosis of beta-ketothiolase deficiency was ultimately made through whole exome sequencing which revealed compound heterozygous variants in ACAT1. Fibroblast studies for beta-ketothiolase enzyme activity were confirmatory. The second patient presented at 6 months of age with ketoacidosis, and was found to have elevations of urinary 2-methyl-3-hydroxybutyric acid, 2-methylacetoacetic acid, and tiglylglycine. Sequencing of ACAT1 demonstrated compound heterozygous presumed causative variants. The patient exhibited choreoathethosis 2 months after the acute metabolic decompensation. These cases highlight that, similar to a number of other organic acidemias and mitochondrial disorders, beta-ketothiolase deficiency can present with metabolic stroke. They also illustrate the variability in clinical presentation, imaging, and biochemical evaluation that make screening for and diagnosis of this rare disorder challenging, and further demonstrate the value of whole exome sequencing in the diagnosis of metabolic disorders.

19.
Pediatr Neurol ; 64: 77-79, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27600546

RESUMO

BACKGROUND: Epilepsy with myoclonic-atonic seizures, also known as myoclonic-astatic epilepsy or Doose syndrome, has been recently linked to variants in the SLC6A1 gene. Epilepsy with myoclonic-atonic seizures is often refractory to antiepileptic drugs, and the ketogenic diet is known for treating medically intractable seizures, although the mechanism of action is largely unknown. We report a novel SLC6A1 variant in a patient with epilepsy with myoclonic-atonic seizures, analyze its effects, and suggest a mechanism of action for the ketogenic diet. METHODS: We describe a ten-year-old girl with epilepsy with myoclonic-atonic seizures and a de novo SLC6A1 mutation who responded well to the ketogenic diet. She carried a c.491G>A mutation predicted to cause p.Cys164Tyr amino acid change, which was identified using whole exome sequencing and confirmed by Sanger sequencing. High-resolution structural modeling was used to analyze the likely effects of the mutation. RESULTS: The SLC6A1 gene encodes a transporter that removes gamma-aminobutyric acid from the synaptic cleft. Mutations in SLC6A1 are known to disrupt the gamma-aminobutyric acid transporter protein 1, affecting gamma-aminobutyric acid levels and causing seizures. The p.Cys164Tyr variant found in our study has not been previously reported, expanding on the variants linked to epilepsy with myoclonic-atonic seizures. CONCLUSION: A 10-year-old girl with a novel SLC6A1 mutation and epilepsy with myoclonic-atonic seizures had an excellent clinical response to the ketogenic diet. An effect of the diet on gamma-aminobutyric acid reuptake mediated by gamma-aminobutyric acid transporter protein 1 is suggested. A personalized approach to epilepsy with myoclonic-atonic seizures patients carrying SLC6A1 mutation and a relationship between epilepsy with myoclonic-atonic seizures due to SLC6A1 mutations, GABAergic drugs, and the ketogenic diet warrants further exploration.


Assuntos
Dieta Cetogênica , Epilepsias Mioclônicas/dietoterapia , Epilepsias Mioclônicas/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Criança , Feminino , Humanos , Modelos Moleculares , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA