Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570889

RESUMO

Hypopigmentation along Blaschko's lines is a hallmark of a poorly defined group of mosaic syndromes whose genetic causes are unknown. Here we show that postzygotic inactivating mutations of RHOA cause a neuroectodermal syndrome combining linear hypopigmentation, alopecia, apparently asymptomatic leukoencephalopathy, and facial, ocular, dental and acral anomalies. Our findings pave the way toward elucidating the etiology of pigmentary mosaicism and highlight the role of RHOA in human development and disease.

3.
Genet Med ; 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649276

RESUMO

PURPOSE: Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2-1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. METHODS: We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. RESULTS: We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. CONCLUSION: Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.

4.
Am J Hum Genet ; 105(4): 854-868, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585109

RESUMO

Cadherins constitute a family of transmembrane proteins that mediate calcium-dependent cell-cell adhesion. The extracellular domain of cadherins consists of extracellular cadherin (EC) domains, separated by calcium binding sites. The EC interacts with other cadherin molecules in cis and in trans to mechanically hold apposing cell surfaces together. CDH2 encodes N-cadherin, whose essential roles in neural development include neuronal migration and axon pathfinding. However, CDH2 has not yet been linked to a Mendelian neurodevelopmental disorder. Here, we report de novo heterozygous pathogenic variants (seven missense, two frameshift) in CDH2 in nine individuals with a syndromic neurodevelopmental disorder characterized by global developmental delay and/or intellectual disability, variable axon pathfinding defects (corpus callosum agenesis or hypoplasia, mirror movements, Duane anomaly), and ocular, cardiac, and genital anomalies. All seven missense variants (c.1057G>A [p.Asp353Asn]; c.1789G>A [p.Asp597Asn]; c.1789G>T [p.Asp597Tyr]; c.1802A>C [p.Asn601Thr]; c.1839C>G [p.Cys613Trp]; c.1880A>G [p.Asp627Gly]; c.2027A>G [p.Tyr676Cys]) result in substitution of highly conserved residues, and six of seven cluster within EC domains 4 and 5. Four of the substitutions affect the calcium-binding site in the EC4-EC5 interdomain. We show that cells expressing these variants in the EC4-EC5 domains have a defect in cell-cell adhesion; this defect includes impaired binding in trans with N-cadherin-WT expressed on apposing cells. The two frameshift variants (c.2563_2564delCT [p.Leu855Valfs∗4]; c.2564_2567dupTGTT [p.Leu856Phefs∗5]) are predicted to lead to a truncated cytoplasmic domain. Our study demonstrates that de novo heterozygous variants in CDH2 impair the adhesive activity of N-cadherin, resulting in a multisystemic developmental disorder, that could be named ACOG syndrome (agenesis of corpus callosum, axon pathfinding, cardiac, ocular, and genital defects).

5.
Mol Genet Genomic Med ; 7(11): e00895, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31493343

RESUMO

BACKGROUND: Tetrasomy 21 is a very rare aneuploidy which could clinically resemble a Down syndrome. It was most often described in its partial form than complete. We report the prenatal, pathological and genetic characteristics of a fetus with mosaic complete tetrasomy 21. This is the second well-documented description of a complete tetrasomy 21 in the literature. METHODS: Prenatal and fetal pathological examinations, cytogenetic and molecular analyses were performed to characterize fetal features with tetrasomy 21. RESULTS: Prenatal ultrasound examination revealed an isolated complete atrioventricular septal defect with normal karyotype on amniotic fluid. After termination of pregnancy, clinical examination of the fetus evoked trisomy 21 or Down syndrome. Chromosomal microarray analysis and FISH on lung tissue showed a mosaicism with four copies of chromosome 21 (tetrasomy 21). CONCLUSION: Our observation and the review of the literature reported the possibility of very weak mosaicism and disease-causing confined tissue-specific mosaicism in fetus or alive patients with chromosome 21 aneuploidy, mainly Down syndrome. In case of clinical diagnosis suggestive of Down syndrome, attention must be paid to the risk of false-negative test due to chromosomal mosaicism (very weak percentage, different tissue distribution). To overcome this risk, it is necessary to privilege the diagnostic techniques without culture step and to increase the number of cells and tissues analyzed, if possible. This study highlights the limits of microarray as the unique diagnostic approach in case of weak mosaic and French cytogenetics guidelines recommend to check anomalies seen in microarray by another technique on the same tissue.

6.
Hum Mutat ; 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513310

RESUMO

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.

7.
BMC Med Genomics ; 12(1): 116, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375103

RESUMO

BACKGROUND: Balanced structural variants are mostly described in disease with gene disruption or subtle rearrangement at breakpoints. CASE PRESENTATION: Here we report a patient with mild intellectual deficiency who carries a de novo balanced translocation t(3;5). Breakpoints were fully explored by microarray, Array Painting and Sanger sequencing. No gene disruption was found but the chromosome 5 breakpoint was localized 228-kb upstream of the MEF2C gene. The predicted Topologically Associated Domains analysis shows that it contains only the MEF2C gene and a long non-coding RNA LINC01226. RNA studies looking for MEF2C gene expression revealed an overexpression of MEF2C in the lymphoblastoid cell line of the patient. CONCLUSIONS: Pathogenicity of MEF2C overexpression is still unclear as only four patients with mild intellectual deficiency carrying 5q14.3 microduplications containing MEF2C are described in the literature. The microduplications in these individuals also contain other genes expressed in the brain. The patient presented the same phenotype as 5q14.3 microduplication patients. We report the first case of a balanced translocation leading to an overexpression of MEF2C similar to a functional duplication.

8.
J Med Genet ; 56(10): 701-710, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31451536

RESUMO

BACKGROUND: The 15q11.2 deletion is frequently identified in the neurodevelopmental clinic. Case-control studies have associated the 15q11.2 deletion with neurodevelopmental disorders, and clinical case series have attempted to delineate a microdeletion syndrome with considerable phenotypic variability. The literature on this deletion is extensive and confusing, which is a challenge for genetic counselling. The aim of this study was to estimate the effect size of the 15q11.2 deletion and quantify its contribution to neurodevelopmental disorders. METHODS: We performed meta-analyses on new and previously published case-control studies and used statistical models trained in unselected populations with cognitive assessments. We used new (n=241) and previously published (n=150) data from a clinically referred group of deletion carriers. 15q11.2 duplications (new n=179 and previously published n=35) were used as a neutral control variant. RESULTS: The deletion decreases IQ by 4.3 points. The estimated ORs and respective frequencies in deletion carriers for intellectual disabilities, schizophrenia and epilepsy are 1.7 (3.4%), 1.5 (2%) and 3.1 (2.1%), respectively. There is no increased risk for heart malformations and autism. In the clinically referred group, the frequency and nature of symptoms in deletions are not different from those observed in carriers of the 15q11.2 duplication suggesting that most of the reported symptoms are due to ascertainment bias. CONCLUSIONS: We recommend that the deletion should be classified as 'pathogenic of mild effect size'. Since it explains only a small proportion of the phenotypic variance in carriers, it is not worth discussing in the developmental clinic or in a prenatal setting.

9.
Eur J Hum Genet ; 27(11): 1692-1700, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31285529

RESUMO

Early infantile epileptic encephalopathy (EIEE) is a heterogeneous group of severe forms of age-related developmental and epileptic encephalopathies with onset during the first weeks or months of life. The interictal electroencephalogram (EEG) shows a "suppression burst" (SB) pattern. The prognosis is usually poor and most children die within the first two years or survive with very severe intellectual disabilities. EIEE type 3 is caused by variants affecting function, in SLC25A22, which is also responsible for epilepsy of infancy with migrating focal seizures (EIMFS). We report a family with a less severe phenotype of EIEE type 3. We performed exome sequencing and identified two unreported variants in SLC25A22 in the compound heterozygous state: NM_024698.4: c.[813_814delTG];[818 G>A] (p.[Ala272Glnfs*144];[Arg273Lys]). Functional studies in cultured skin fibroblasts from a patient showed that glutamate oxidation was strongly defective, based on a literature review. We clustered the 18 published patients (including those from this family) into three groups according to the severity of the SLC25A22-related disorders. In an attempt to identify genotype-phenotype correlations, we compared the variants according to the location depending on the protein domains. We observed that patients with two variants located in helical transmembrane domains presented a severe phenotype, whereas patients with at least one variant outside helical transmembrane domains presented a milder phenotype. These data are suggestive of a continuum of disorders related to SLC25A22 that could be called SLC25A22-related disorders. This might be a first clue to enable geneticists to outline a prognosis based on genetic molecular data regarding the SLC25A22 gene.

10.
BMC Med Genomics ; 12(1): 105, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31288860

RESUMO

BACKGROUND: Nicolaides-Baraitser syndrome (NCBRS) is a neurodevelopmental disorder caused by pathogenic sequence variants in SMARCA2 which encodes the catalytic component of the chromatin remodeling BAF complex. Pathogenic variants in genes that encode epigenetic regulators have been associated with genome-wide changes in DNA methylation (DNAm) in affected individuals termed DNAm signatures. METHODS: Genome-wide DNAm was assessed in whole-blood samples from the individuals with pathogenic SMARCA2 variants and NCBRS diagnosis (n = 8) compared to neurotypical controls (n = 23) using the Illumina MethylationEPIC array. Differential methylated CpGs between groups (DNAm signature) were identified and used to generate a model enabling classification variants of uncertain significance (VUS; n = 9) in SMARCA2 as "pathogenic" or "benign". A validation cohort of NCBRS cases (n = 8) and controls (n = 96) demonstrated 100% model sensitivity and specificity. RESULTS: We identified a DNAm signature of 429 differentially methylated CpG sites in individuals with NCBRS. The genes to which these CpG sites map are involved in cell differentiation, calcium signaling, and neuronal function consistent with NCBRS pathophysiology. DNAm model classifications of VUS were concordant with the clinical phenotype; those within the SMARCA2 ATPase/helicase domain classified as "pathogenic". A patient with a mild neurodevelopmental NCBRS phenotype and a VUS distal to the ATPase/helicase domain did not score as pathogenic, clustering away from cases and controls. She demonstrated an intermediate DNAm profile consisting of one subset of signature CpGs with methylation levels characteristic of controls and another characteristic of NCBRS cases; each mapped to genes with ontologies consistent with the patient's unique clinical presentation. CONCLUSIONS: Here we find that a DNAm signature of SMARCA2 pathogenic variants in NCBRS maps to CpGs relevant to disorder pathophysiology, classifies VUS, and is sensitive to the position of the variant in SMARCA2. The patient with an intermediate model score demonstrating a unique genotype-epigenotype-phenotype correlation underscores the potential utility of this signature as a functionally relevant VUS classification system scalable beyond binary "benign" versus "pathogenic" scoring. This is a novel feature of DNAm signatures that could enable phenotypic predictions from genotype data. Our findings also demonstrate that DNAm signatures can be domain-specific, highlighting the precision with which they can reflect genotypic variation.

11.
Clin Genet ; 96(4): 309-316, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31237352

RESUMO

Pycnodysostosis is a lysosomal autosomal recessive skeletal dysplasia characterized by osteosclerosis, short stature, acro-osteolysis, facial features and an increased risk of fractures. The clinical heterogeneity of the disease and its rarity make it difficult to provide patients an accurate prognosis, as well as appropriate care and follow-up. French physicians from the OSCAR network have been asked to fill out questionnaires collecting molecular and clinical data for 27 patients issued from 17 unrelated families. All patients showed short stature (mean = -3.5 SD) which was more severe in females (P = .006). The mean fracture rate was moderate (0.21 per year), with four fractures in total average. About 75% underwent at least one surgery, with an average number of 2.1 interventions per patient. About 50% required non-invasive assisted ventilation due to sleep apnea (67%). About 29% showed psychomotor difficulties and 33% needed a school assistant or adapted schooling. No patient had any psychological evaluation or follow-up. Molecular data were available for 14 families. Growth hormone administration was efficient on linear growth in 40% of cases. We propose several axis of management, such as systematic cerebral MRI for Chiari malformation screening at diagnosis and regular psychological follow-up.

14.
Am J Med Genet A ; 179(7): 1390-1394, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30957429

RESUMO

Treacher Collins syndrome (TCS) is a frequent cause of mandibulofacial dysostosis. To date, TCS-causing mutations in three genes, namely TCOF1, POLR1D, and POLR1C have been identified. TCS is usually inherited in an autosomal dominant manner, with a high clinical variability and no phenotype-genotype correlation. Up-to now, five families have been reported with an autosomal recessive mode of inheritance due to mutations in POLR1D or POLR1C. We report here a new family with two sisters affected by mild TCS carrying compound POLR1C heterozygous mutations, and review the literature on mild forms of TCS, autosomal recessive inheritance in this syndrome and POLR1C mutations.

15.
Cell Stem Cell ; 24(2): 257-270.e8, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30595499

RESUMO

Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.

16.
Neuroimage Clin ; 2018 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-30497982

RESUMO

Kabuki syndrome (KS) is a rare congenital disorder (1/32000 births) characterized by distinctive facial features, intellectual disability, short stature, and dermatoglyphic and skeletal abnormalities. In the last decade, mutations in KMT2D and KDM6A were identified as a major cause of kabuki syndrome. Although genetic abnormalities have been highlighted in KS, brain abnormalities have been little explored. Here, we have investigated brain abnormalities in 6 patients with KS (4 males; Mage = 10.96 years, SD = 2.97 years) with KMT2D mutation in comparison with 26 healthy controls (17 males; Mage = 10.31 years, SD = 2.96 years). We have used MRI to explore anatomical and functional brain abnormalities in patients with KS. Anatomical abnormalities in grey matter volume were assessed by cortical and subcortical analyses. Functional abnormalities were assessed by comparing rest cerebral blood flow measured with arterial spin labeling-MRI. When compared to healthy controls, KS patients had anatomical alterations characterized by grey matter decrease localized in the bilateral precentral gyrus and middle frontal gyrus. In addition, KS patients also presented functional alterations characterized by cerebral blood flow decrease in the left precentral gyrus and middle frontal gyrus. Moreover, subcortical analyses revealed significantly decreased grey matter volume in the bilateral hippocampus and dentate gyrus in patients with KS. Our results strongly indicate anatomical and functional brain abnormalities in KS. They suggest a possible neural basis of the cognitive symptoms observed in KS, such as fine motor impairment, and indicate the need to further explore the consequences of such brain abnormalities in this disorder. Finally, our results encourage further imaging-genetics studies investigating the link between genetics, anatomical and functional brain alterations in KS.

17.
Am J Med Genet A ; 176(12): 2740-2750, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30548201

RESUMO

The oculoauriculofrontonasal syndrome (OAFNS) is a rare disorder characterized by the association of frontonasal dysplasia (widely spaced eyes, facial cleft, and nose abnormalities) and oculo-auriculo-vertebral spectrum (OAVS)-associated features, such as preauricular ear tags, ear dysplasia, mandibular asymmetry, epibulbar dermoids, eyelid coloboma, and costovertebral anomalies. The etiology is unknown so far. This work aimed to identify molecular bases for the OAFNS. Among a cohort of 130 patients with frontonasal dysplasia, accurate phenotyping identified 18 individuals with OAFNS. We describe their clinical spectrum, including the report of new features (micro/anophtalmia, cataract, thyroid agenesis, polymicrogyria, olfactory bulb hypoplasia, and mandibular cleft), and emphasize the high frequency of nasal polyps in OAFNS (56%). We report the negative results of ALX1, ALX3, and ALX4 genes sequencing and next-generation sequencing strategy performed on blood-derived DNA from respectively, four and four individuals. Exome sequencing was performed in four individuals, genome sequencing in one patient with negative exome sequencing result. Based on the data from this series and the literature, diverse hypotheses can be raised regarding the etiology of OAFNS: mosaic mutation, epigenetic anomaly, oligogenism, or nongenetic cause. In conclusion, this series represents further clinical delineation work of the rare OAFNS, and paves the way toward the identification of the causing mechanism.


Assuntos
Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Orelha Externa/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Padrões de Herança , Fenótipo , Anormalidades do Sistema Respiratório/diagnóstico , Anormalidades do Sistema Respiratório/genética , Coluna Vertebral/anormalidades , Adolescente , Criança , Pré-Escolar , Proteínas de Ligação a DNA/genética , Facies , Feminino , Proteínas de Homeodomínio/genética , Humanos , Lactente , Recém-Nascido , Masculino , Locos de Características Quantitativas , Crânio/anormalidades , Crânio/diagnóstico por imagem , Tomografia Computadorizada Espiral , Fatores de Transcrição/genética , Sequenciamento Completo do Exoma
18.
Am J Hum Genet ; 103(5): 752-768, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388402

RESUMO

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.

19.
Artigo em Inglês | MEDLINE | ID: mdl-30308700

RESUMO

BACKGROUND: General practitioners (GPs) have an increasing role in referring patients with putative mutation in BRCA1/2 genes for genetics consultation and for long-term follow-up of mutation carriers. METHODS: We compared the expectations of the GPs' role according to BRCA1/2 mutation carriers and to GPs themselves. RESULTS: Overall, 38% (58/152) of eligible GPs and 70% (176/252) of eligible patients were surveyed. Although 81% of GPs collected the family history, only 24% considered that they know criteria indicating genetics consultation and 39% sufficient knowledge of BRCA1/2 guidelines to answer patients' questions. Twelve% of GPs were aware of the French national guidelines. Among unsatisfied patients, 40% felt that their GP was able to answer (moderately, sufficiently, or completely) specific questions about BRCA1/2 care as compared with 81% in satisfied patients. Only 33% of GPs reported being informed directly by the geneticist about the patients' results. GPs' main expectations for their role in BRCA1/2 carrier care were psychological support and informing relatives about screening (72% and 71%, respectively), which contrasts with the perceptions of patients, who mainly requested medical advice for BRCA1/2-related care (51%). CONCLUSION: There is an important need for GP training and enhancing interactions between GPs and geneticists to improve the GP's role in BRCA1/2 screening and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA