Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Mais filtros

Base de dados
Intervalo de ano de publicação
Nanoscale ; 13(45): 19085-19097, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34761764


Polypyrrole (PPy) nanoparticles have been widely studied in tumor photothermal therapy (PTT) for their significant photostability, good biocompatibility, and excellent photothermal performance. Herein, we report bovine serum albumin (BSA) stabilized PPy that were mineralized by MnO2 nanozyme on the surface (PPy@BSA-MnO2) to achieve synergistic photothermal and chemodynamic therapy (CDT) for breast cancer. In this multifunctional nanoplatform, the surface-loaded MnO2 undergoes a redox reaction with glutathione (GSH) to generate glutathione disulfide (GSSG) and Mn2+. Then, Mn2+ can convert H2O2 into a highly cytotoxic ˙OH to achieve chemodynamic therapy (CDT) and possess good magnetic resonance (MR) T1-weighted imaging capabilities to realize contrast imaging of the 4T1 tumor-bearing mouse models. In addition, PPy nanoparticles can efficiently convert near-infrared light energy into heat and achieve PTT. Most importantly, PPy@BSA-MnO2 nanoprobes have excellent in vitro 4T1 cell-killing effect and in vivo tumor-suppressive properties. The acute toxicity assessment results indicate that PPy@BSA-MnO2 nanoprobes have good biological safety. Therefore, the as-prepared multifunctional PPy@BSA-MnO2 nanoprobes possess excellent performance to promote MRI-guided PTT/CDT synergistic therapy for breast cancer treatment and have extensive clinical transformation and application prospects.

Neoplasias , Polímeros , Animais , Peróxido de Hidrogênio , Imageamento por Ressonância Magnética , Compostos de Manganês , Camundongos , Óxidos , Pirróis , Nanomedicina Teranóstica