Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572271

RESUMO

The use of mesenchymal stem cells (MSCs) for regenerative purposes has become common in a large variety of diseases. In the dental and maxillofacial field, there are emerging clinical needs that could benefit from MSC-based therapeutic approaches. Even though MSCs can be isolated from different tissues, such as bone marrow, adipose tissue, etc., and are known for their multilineage differentiation, their different anatomical origin can affect the capability to differentiate into a specific tissue. For instance, MSCs isolated from the oral cavity might be more effective than adipose-derived stem cells (ASCs) for the treatment of dental defects. Indeed, in the oral cavity, there are different sources of MSCs that have been individually proposed as promising candidates for tissue engineering protocols. The therapeutic strategy based on MSCs can be direct, by using cells as components of the tissue to be regenerated, or indirect, aimed at delivering local growth factors, cytokines, and chemokines produced by the MSCs. Here, the authors outline the major sources of mesenchymal stem cells attainable from the oral cavity and discuss their possible usage in some of the most compelling therapeutic frontiers, such as periodontal disease and dental pulp regeneration.

2.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439477

RESUMO

Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.

4.
Leg Med (Tokyo) ; 53: 101934, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34225094

RESUMO

Higher resolution than common computed tomography has been reached through Micro-Computed Tomography (micro-CT) on small samples. Emerging forensic applications of micro-CT are the study of fetal/infant organs and whole fetuses, and their two/three-dimension reconstruction; it allows: to facilitate pathologists' role in the identification of causes of fetal stillbirth and of infant death; to create digital two and/or three-dimension representations of fetal/infant organs and whole fetuses which can be easily discussed in civil and/or penal courts. Micro-CT reconstructs cardiac anatomy of animal and human sample. There are no studies that are specifically aimed to evaluate possible effects of micro-CT processing on cardiac microscopic evaluation. This study analyzed microscopic effects of micro-CT processing on human-fetal-hearts. After processing with Lugol-solution or Microfil-MV-122-injection in coronary branches, fetal hearts underwent micro-CT scan. Then, hearts were microscopically analyzed using hematoxylin/eosin, trichrome, immunohistochemistry (IHC) for actin-protein, and IHC for desmin-intermediate-filament stains. In all cases staining was present in all fields. In all slides, disarranged myocardial proteins with increase of inter filaments and inter cellular spaces was reported. This manuscript allowed to observe post micro-CT appropriate staining and antigenic reactivity, and to identify cytoarchitecture modifications that could compromise slides' microscopic evaluation. It also highlighted a possible role of micro-CT determining this cytoarchitecture phenomenon.


Assuntos
Feto , Coração , Animais , Feto/diagnóstico por imagem , Medicina Legal , Coração/diagnóstico por imagem , Humanos , Coloração e Rotulagem , Microtomografia por Raio-X
5.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800828

RESUMO

Hypercholesterolemia is one of the major causes of cardiovascular disease, the risk of which is further increased if other forms of dyslipidemia occur. Current therapeutic strategies include changes in lifestyle coupled with drug administration. Statins represent the most common therapeutic approach, but they may be insufficient due to the onset of resistance mechanisms and side effects. Consequently, patients with mild hypercholesterolemia prefer the use of food supplements since these are perceived to be safer. Here, we investigate the phytochemical profile and cholesterol-lowering potential of Protium heptaphyllum gum resin extract (PHE). Chemical characterization via HPLC-APCI-HRMS2 and GC-FID/MS identified 13 compounds mainly belonging to ursane, oleanane, and tirucallane groups. Studies on human hepatocytes have revealed how PHE is able to reduce cholesterol production and regulate the expression of proteins involved in its metabolism. (HMGCR, PCSK9, LDLR, FXR, IDOL, and PPAR). Moreover, measuring the inhibitory activity of PHE against HMGR, moderate inhibition was recorded. Finally, molecular docking studies identified acidic tetra- and pentacyclic triterpenoids as the main compounds responsible for this action. In conclusion, our study demonstrates how PHE may be a useful alternative to contrast hypercholesterolemia, highlighting its potential as a sustainable multitarget natural extract for the nutraceutical industry that is rapidly gaining acceptance as a source of health-promoting compounds.


Assuntos
Anticolesterolemiantes/farmacologia , Hidrogênio/química , Gomas Vegetais/química , Resinas Vegetais/química , Triterpenos/farmacologia , Anticolesterolemiantes/isolamento & purificação , Domínio Catalítico/efeitos dos fármacos , Colesterol/metabolismo , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais , Avaliação Pré-Clínica de Medicamentos , Ionização de Chama , Cromatografia Gasosa-Espectrometria de Massas , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Lovastatina/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Triterpenos/isolamento & purificação
6.
Int J Oral Maxillofac Implants ; 36(2): 242-247, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909713

RESUMO

PURPOSE: Bone graft materials and soft tissue allografts are widely used in clinical practice to counteract physiologic postextraction site tridimensional shrinkage. The aim of this study was to test if plasma of argon treatment could have a bioactivation effect on hard and soft tissue scaffolds in clinical usage. MATERIALS AND METHODS: Forty-eight bovine bone matrix and porcine collagen samples were subdivided into two groups (test and control) of 12 samples each. The test group was treated with argon plasma (10 W, 1 bar for 12 minutes), while the control group was left untreated. Immediate cell adhesion and a proliferation assay at 72 hours were performed in the perfusion chamber of a bioreactor. Additionally, micro-CT analysis was performed on the treated and untreated scaffolds, before and after soaking in cell culture medium (four samples). RESULTS: Osteoblasts seeded on plasma-treated bone matrix significantly increased the adhesion level compared with the untreated sample (43,144.3 ± 12,442.9 vs 21,736 ± 77,27.1; P = .0083). However, 3-day proliferation tests could not achieve significant differences between groups (105,715.5 ± 21,751.5 vs 107,108.6 ± 19,343.4; P = .998). No differences were measured on fibroblast adhesion on the collagen matrix in both conditions. Plasma of argon treatment and soaking in cell culture medium did not affect the bone matrix samples. The structure of collagen matrix samples was unaltered after plasma treatment, but became enlarged after soaking. CONCLUSION: Plasma of argon may be useful to biofunctionalize bone grafts, although benefits seemed to disappear after 3 days. No biologic response was detected on collagen matrix scaffolds. In vivo studies are needed to draw final clinical conclusions.


Assuntos
Matriz Óssea , Gases em Plasma , Animais , Argônio , Transplante Ósseo , Bovinos , Colágeno , Suínos , Tecidos Suporte
7.
Biomedicines ; 9(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800030

RESUMO

Mesenchymal stem cells (MSCs) can be harvested from different sites in the oral cavity, representing a reservoir of cells useful for regenerative purposes. As direct comparisons between at least two types of MSCs deriving from the same patient are surprisingly rare in scientific literature, we isolated and investigated the osteoinductive potential of dental pulp stem cells (DPSCs) and buccal fat pad stem cells (BFPSCs). MSCs were isolated from the third molar dental pulp and buccal fat pads of 12 patients. The number of viable cells was quantified through manual count. Proliferation and osteodifferentiation assays, flow cytometry analysis of cell phenotypes, and osteocalcin release in vitro were performed. The isolation of BFPSCs and DPSCs was successful in 7 out of 12 (58%) and 3 out of 12 (25%) of retrieved samples, respectively. The yield of cells expressing typical stem cell markers and the level of proliferation were higher in BFPSCs than in DPSCs. Both BFP-SCs and DPSCs differentiated into osteoblast-like cells and were able to release a mineralized matrix. The release of osteocalcin, albeit greater for BFPSCs, did not show any significant difference between BFPSCs and DPSCs. The yield of MSCs depends on their site of origin as well as on the protocol adopted for their isolation. Our data show that BFP is a valuable source for the derivation of MSCs that can be used for regenerative treatments.

8.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33920046

RESUMO

SmartBone® (SB) is a biohybrid bone substitute advantageously proposed as a class III medical device for bone regeneration in reconstructive surgeries (oral, maxillofacial, orthopedic, and oncology). In the present study, a new strategy to improve SB osteoinductivity was developed. SB scaffolds were loaded with lyosecretome, a freeze-dried formulation of mesenchymal stem cell (MSC)-secretome, containing proteins and extracellular vesicles (EVs). Lyosecretome-loaded SB scaffolds (SBlyo) were prepared using an absorption method. A burst release of proteins and EVs (38% and 50% after 30 min, respectively) was observed, and then proteins were released more slowly with respect to EVs, most likely because they more strongly adsorbed onto the SB surface. In vitro tests were conducted using adipose tissue-derived stromal vascular fraction (SVF) plated on SB or SBlyo. After 14 days, significant cell proliferation improvement was observed on SBlyo with respect to SB, where cells filled the cavities between the native trabeculae. On SB, on the other hand, the process was still present, but tissue formation was less organized at 60 days. On both scaffolds, cells differentiated into osteoblasts and were able to mineralize after 60 days. Nonetheless, SBlyo showed a higher expression of osteoblast markers and a higher quantity of newly formed trabeculae than SB alone. The quantification analysis of the newly formed mineralized tissue and the immunohistochemical studies demonstrated that SBlyo induces bone formation more effectively. This osteoinductive effect is likely due to the osteogenic factors present in the lyosecretome, such as fibronectin, alpha-2-macroglobulin, apolipoprotein A, and TGF-ß.


Assuntos
Matriz Óssea/química , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/farmacologia , Transplante de Células-Tronco Mesenquimais , Animais , Substitutos Ósseos/química , Bovinos , Diferenciação Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Humanos , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Procedimentos Cirúrgicos Reconstrutivos/métodos
9.
Mar Drugs ; 19(2)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672056

RESUMO

Persistent hypoxia is a main clinical feature of chronic wounds. Intriguingly, oxygen-loaded nanodroplets (OLNDs), filled with oxygen-solving 2H,3H-decafluoropentane and shelled with polysaccharides, have been proposed as a promising tool to counteract hypoxia by releasing a clinically relevant oxygen amount in a time-sustained manner. Here, four different types of chitosan (low or medium weight (LW or MW), glycol-(G-), and methylglycol-(MG-) chitosan) were compared as candidate biopolymers for shell manufacturing. The aim of the work was to design OLND formulations with optimized physico-chemical characteristics, efficacy in oxygen release, and biocompatibility. All OLND formulations displayed spherical morphology, cationic surfaces, ≤500 nm diameters (with LW chitosan-shelled OLNDs being the smallest), high stability, good oxygen encapsulation efficiency, and prolonged oxygen release kinetics. Upon cellular internalization, LW, MW, and G-chitosan-shelled nanodroplets did not significantly affect the viability, health, or metabolic activity of human keratinocytes (HaCaT cell line). On the contrary, MG-chitosan-shelled nanodroplets showed very poor biocompatibility. Combining the physico-chemical and the biological results obtained, LW chitosan emerges as the best candidate biopolymer for future OLND application as a skin device to treat chronic wounds.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Quitosana/química , Oxigênio/administração & dosagem , Ferimentos e Lesões/tratamento farmacológico , Materiais Biocompatíveis/farmacologia , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células HaCaT , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Peso Molecular , Nanopartículas , Oxigênio/farmacologia , Tamanho da Partícula , Ferimentos e Lesões/patologia
10.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977633

RESUMO

Reconstruction of bony defects is challenging when conventional grafting methods are used because of their intrinsic limitations (biological cost and/or biological properties). Bone regeneration techniques are rapidly evolving since the introduction of three-dimensional (3D) bioprinting. Bone tissue engineering is a branch of regenerative medicine that aims to find new solutions to treat bone defects, which can be repaired by 3D printed living tissues. Its aim is to overcome the limitations of conventional treatment options by improving osteoinduction and osteoconduction. Several techniques of bone bioprinting have been developed: inkjet, extrusion, and light-based 3D printers are nowadays available. Bioinks, i.e., the printing materials, also presented an evolution over the years. It seems that these new technologies might be extremely promising for bone regeneration. The purpose of the present review is to give a comprehensive summary of the past, the present, and future developments of bone bioprinting and bioinks, focusing the attention on crucial aspects of bone bioprinting such as selecting cell sources and attaining a viable vascularization within the newly printed bone. The main bioprinters currently available on the market and their characteristics have been taken into consideration, as well.


Assuntos
Bioimpressão , Regeneração Óssea , Substitutos Ósseos/química , Impressão Tridimensional/instrumentação , Engenharia Tecidual , Tecidos Suporte/química , Bioimpressão/instrumentação , Bioimpressão/métodos , Humanos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
11.
J Cell Physiol ; 235(12): 10110-10115, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32567069

RESUMO

Here we present a new Fiji/ImageJ2 plugin called Multiparametric Morphometric Analysis of EUcaryotic cellS (MORPHEUS), designed for the automated evaluation of cell morphometry from images acquired by fluorescence microscopy. MORPHEUS works with sampling distributions to learn-in an unsupervised manner and by a nonparametric approach-how to recognize the cells suitable for subsequent analysis. Afterward, the algorithm performs the evaluation of the most relevant cell-shape descriptors over the full set of detected cells. Optionally, also the extraction of nucleus features and a double-scale analysis of orientation can be performed. The whole algorithm is implemented as a one-click procedure, thus minimizing the user's intervention. By reducing biases and errors of human origin, MORPHEUS is intended to be a useful tool to enhance reproducibility in the bioimage analysis.


Assuntos
Núcleo Celular/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência , Software , Algoritmos , Eucariotos/ultraestrutura , Humanos
12.
Front Physiol ; 11: 421, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431625

RESUMO

The vascular endothelium constitutes a semi-permeable barrier between blood and interstitial fluids. Since an augmented endothelial permeability is often associated to pathological states, understanding the molecular basis for its regulation is a crucial biomedical and clinical challenge. This review focuses on the processes controlling paracellular permeability that is the permeation of fluids between adjacent endothelial cells (ECs). Cytosolic calcium changes are often detected as early events preceding the alteration of the endothelial barrier (EB) function. For this reason, great interest has been devoted in the last decades to unveil the molecular mechanisms underlying calcium fluxes and their functional relationship with vessel permeability. Beyond the dicotomic classification between store-dependent and independent calcium entry at the plasma membrane level, the search for the molecular components of the related calcium-permeable channels revealed a difficult task for intrinsic and technical limitations. The contribution of redundant channel-forming proteins including members of TRP superfamily and Orai1, together with the very complex intracellular modulatory pathways, displays a huge variability among tissues and along the vascular tree. Moreover, calcium-independent events could significantly concur to the regulation of vascular permeability in an intricate and fascinating multifactorial framework.

13.
Ann Anat ; 230: 151489, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32165207

RESUMO

BACKGROUND: Plasma of argon was demonstrated to improve protein and cell adhesion on implant surface. On the other hand, increased surface energy and hydrophilicity could potentially amplify the risks of implant surface contamination during clinical phases, risks that have not yet been evaluated in Literature. The aim of the present in vitro study was to verify if Plasma treatment could alter the implant surface characteristics and its ability to remain sterile. MATERIALS AND METHODS: Implants from 9 brands were collected (n=11). One implant for each company was used for SEM surface analysis. To perform the microbiological analysis, ten implants from each company were used and randomly split by allocation either in test or control group. To replicate the surgical work flow, both test and control samples were left 60s in clinical environment. Bacterial growth analysis was performed. Optical density at 600nm was measured as readout of bacterial growth and colony forming unit (CFU) after 24h was evaluated. Statistical analysis was performed by using the Wilcoxon Mann Whitney test. A p-value lower than 0.05 was considered significant. RESULTS: SEM analysis revealed different categories of implant surface roughness. The optical density confirmed a readout of bacterial growth between 4 and 7 with no significant differences within groups. The number of CFU/ml for each measured sample (test and control) was lower than 102 and failed to present significant differences. CONCLUSION: Surface activation using plasma of argon did not affect the degree of implant contamination, allowing to maintain a substantial sterility of the implant independently of its morphology. This may allow in the next future the use of bioactivation through plasma of argon to exploit the superhydrophilicity deriving from this biophysical process.


Assuntos
Argônio/farmacologia , Implantes Dentários , Implantes Dentários/microbiologia , Microscopia Eletrônica de Varredura , Distribuição Aleatória , Propriedades de Superfície
14.
Int J Mol Sci ; 21(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168919

RESUMO

BACKGROUND: Attaining an effective mucosal attachment to the transmucosal part of the implant could protect the peri-implant bone. AIM: To evaluate if chair side surface treatments (plasma of Argon and ultraviolet light) may affect fibroblast adhesion on different titanium surfaces designed for soft tissue healing. METHODS: Grade 5 titanium discs with four different surface topographies were subdivided into 3 groups: argon-plasma; ultraviolet light, and no treatment. Cell morphology and adhesion tests were performed at 20 min, 24 h, and 72 h. RESULTS: Qualitative observation of the surfaces performed at the SEM was in accordance with the anticipated features. Roughness values ranged from smooth (MAC Sa = 0.2) to very rough (XA Sa = 21). At 20 min, all the untreated surfaces presented hemispherical cells with reduced filopodia, while the cells on treated samples were more spread with broad lamellipodia. However, these differences in spreading behavior disappeared at 24 h and 72 h. Argon-plasma, but not UV, significantly increased the number of fibroblasts independently of the surface type but only at 20 min. Statistically, there was no surface in combination with a treatment that favored a greater cellular adhesion. CONCLUSIONS: Data showed potential biological benefits of treating implant abutment surfaces with the plasma of argon in relation to early-stage cell adhesion.


Assuntos
Argônio/farmacologia , Fibroblastos/citologia , Titânio/química , Adesão Celular , Proliferação de Células/fisiologia , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Humanos , Técnicas In Vitro , Propriedades de Superfície
15.
Clin Oral Investig ; 24(8): 2611-2623, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31748982

RESUMO

BACKGROUND: The osteoconductive properties of bone grafting materials represent one area of research for the management of bony defects found in the fields of periodontology and oral surgery. From a physico-chemical aspect, the wettability of the graft has been demonstrated to be one of the most important factors for new bone formation. It is also well-known that argon plasma treatment (PAT) and ultraviolet irradiation (UV) may increase the surface wettability and, consequently, improve the regenerative potential of the bone grafts. Therefore, the aim of the present in vitro study was to evaluate the effect of PAT and UV treatment on the osteoconductive potential of various bone grafts. MATERIALS AND METHODS: The following four frequently used bone grafts were selected for this study: synthetic hydroxyapatite (Mg-HA), biphasic calcium phosphate (BCP), cancellous and cortical xenogenic bone matrices (CaBM, CoBM). Sixty-six serially numbered disks 10 mm in diameter were used for each graft material and randomly assigned to the following three groups: test 1 (PAT), test 2 (UV), and control (no treatment). Six samples underwent topographic analysis using SEM pre- and post-treatments to evaluate changes in surface topography/characteristics. Additionally, cell adhesion and cell proliferation were evaluated at 2 and 72 h respectively following incubation in a three-dimensional culture system utilizing a bioreactor. Furthermore, the effects of PAT and UV on immune cells were assessed by measuring the viability of human macrophages at 24 h. RESULTS: The topographic analysis showed different initial morphologies of the commercial biomaterials (e.g., Mg-HA and BCP showed flat morphology; BM samples were extremely porous with high roughness). The surface analysis following experimental treatments did not demonstrate topographical difference when compared with controls. Investigation of cells demonstrated that PAT treatment significantly increased cell adhesion of all 4 evaluated bone substitutes, whereas UV failed to show any statistically significant differences. The viability test revealed no differences in terms of macrophage adhesion on any of the tested surfaces. CONCLUSION: Within their limitations, the present results suggest that treatment of various bone grafting materials with PAT appears to enhance the osteoconductivity of bone substitutes in the early stage by improving osteoblast adhesion without concomitantly affecting macrophage viability. CLINICAL RELEVANCE: Treatment of bone grafts with PAT appears to result in faster osseointegration of the bone grafting materials and may thus favorably influence bone regeneration.


Assuntos
Regeneração Óssea , Substitutos Ósseos , Argônio , Materiais Biocompatíveis , Transplante Ósseo , Durapatita , Humanos , Gases em Plasma
16.
Front Physiol ; 10: 1291, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681005

RESUMO

The synergistic crosstalk between osteodifferentiating stem cells and endothelial cells (ECs) gained the deserved consideration, shedding light on the role of angiogenesis for bone formation and healing. A deep understanding of the molecular basis underlying the mutual influence of mesenchymal stem cells (MSCs) and ECs in the osteogenic process may help improve greatly bone regeneration. Here, the authors demonstrated that osteodifferentiating MSCs co-cultured with ECs promote angiogenesis and ECs recruitment. Moreover, through the use of 3D co-culture systems, we showed that ECs are in turn able to further stimulate the osteodifferentiation of MSCs, thus enhancing bone production. These findings highlighted the existence of a virtuous loop between MSCs and ECs that is central to the osteogenic process. Unraveling the molecular mechanisms governing the functional interaction MSCs and ECs holds great potential in the field of regenerative medicine.

17.
Cells ; 8(7)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31323976

RESUMO

It has long been known that the conditionally essential polyunsaturated arachidonic acid (AA) regulates cerebral blood flow (CBF) through its metabolites prostaglandin E2 and epoxyeicosatrienoic acid, which act on vascular smooth muscle cells and pericytes to vasorelax cerebral microvessels. However, AA may also elicit endothelial nitric oxide (NO) release through an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we adopted Ca2+ and NO imaging, combined with immunoblotting, to assess whether AA induces intracellular Ca2+ signals and NO release in the human brain microvascular endothelial cell line hCMEC/D3. AA caused a dose-dependent increase in [Ca2+]i that was mimicked by the not-metabolizable analogue, eicosatetraynoic acid. The Ca2+ response to AA was patterned by endoplasmic reticulum Ca2+ release through type 3 inositol-1,4,5-trisphosphate receptors, lysosomal Ca2+ mobilization through two-pore channels 1 and 2 (TPC1-2), and extracellular Ca2+ influx through transient receptor potential vanilloid 4 (TRPV4). In addition, AA-evoked Ca2+ signals resulted in robust NO release, but this signal was considerably delayed as compared to the accompanying Ca2+ wave and was essentially mediated by TPC1-2 and TRPV4. Overall, these data provide the first evidence that AA elicits Ca2+-dependent NO release from a human cerebrovascular endothelial cell line, but they seemingly rule out the possibility that this NO signal could acutely modulate neurovascular coupling.


Assuntos
Ácido Araquidônico/farmacologia , Sinalização do Cálcio , Cálcio/metabolismo , Células Endoteliais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Encéfalo/irrigação sanguínea , Canais de Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Microcirculação , Canais de Cátion TRPV/metabolismo
18.
Cancers (Basel) ; 11(7)2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31288452

RESUMO

Background: Transient receptor potential (TRP) channels control multiple processes involved in cancer progression by modulating cell proliferation, survival, invasion and intravasation, as well as, endothelial cell (EC) biology and tumor angiogenesis. Nonetheless, a complete TRP expression signature in tumor vessels, including in prostate cancer (PCa), is still lacking. Methods: In the present study, we profiled by qPCR the expression of all TRP channels in human prostate tumor-derived ECs (TECs) in comparison with TECs from breast and renal tumors. We further functionally characterized the role of the 'prostate-associated' channels in proliferation, sprout formation and elongation, directed motility guiding, as well as in vitro and in vivo morphogenesis and angiogenesis. Results: We identified three 'prostate-associated' genes whose expression is upregulated in prostate TECs: TRPV2 as a positive modulator of TEC proliferation, TRPC3 as an endothelial PCa cell attraction factor and TRPA1 as a critical TEC angiogenic factor in vitro and in vivo. Conclusions: We provide here the full TRP signature of PCa vascularization among which three play a profound effect on EC biology. These results contribute to explain the aggressive phenotype previously observed in PTEC and provide new putative therapeutic targets.

19.
Cancers (Basel) ; 11(6)2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31159426

RESUMO

Tumor microenvironment is particularly enriched with extracellular ATP (eATP), but conflicting evidence has been provided on its functional effects on tumor growth and vascular remodeling. We have previously shown that high eATP concentrations exert a strong anti-migratory, antiangiogenic and normalizing activity on human tumor-derived endothelial cells (TECs). Since both metabotropic and ionotropic purinergic receptors trigger cytosolic calcium increase ([Ca2+]c), the present work investigated the properties of [Ca2+]c events elicited by high eATP in TECs and their role in anti-migratory activity. In particular, the quantitative and kinetic properties of purinergic-induced Ca2+ release from intracellular stores and Ca2+ entry from extracellular medium were investigated. The main conclusions are: (1) stimulation of TECs with high eATP triggers [Ca2+]c signals which include Ca2+ mobilization from intracellular stores (mainly ER) and Ca2+ entry through the plasma membrane; (2) the long-lasting Ca2+ influx phase requires both store-operated Ca2+ entry (SOCE) and non-SOCE components; (3) SOCE is not significantly involved in the antimigratory effect of high ATP stimulation; (4) ER is the main source for intracellular Ca2+ release by eATP: it is required for the constitutive migratory potential of TECs but is not the only determinant for the inhibitory effect of high eATP; (5) a complex interplay occurs among ER, mitochondria and lysosomes upon purinergic stimulation; (6) high eUTP is unable to inhibit TEC migration and evokes [Ca2+]c signals very similar to those described for eATP. The potential role played by store-independent Ca2+ entry and Ca2+-independent events in the regulation of TEC migration by high purinergic stimula deserves future investigation.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30652649

RESUMO

BACKGROUND: Purinergic signalling is involved in several physiological and pathophysiological processes. P2X7 Receptor (P2X7R) is a calcium-permeable ion channel that is gaining interest as a potential therapeutic target for the treatment of different diseases including inflammation, pain, psychiatric disorders and cancer. P2X7R is ubiquitously expressed and sensitive to high ATP levels, usually found in tumor microenvironment. P2X7R regulates several cell functions, from migration to cell death, but its selective contribution to tumor progression remains controversial. OBJECTIVE: Current review was conducted to check involvement of P2X7R use in cancer treatment. METHODS: We review the most recent patents focused on the use of P2X7R in the treatment of cancer. RESULTS: P2X7R is an intriguing purinergic receptor that plays different roles in tumor progression. CONCLUSION: Powerful strategies able to selectively interfere with its expression and function should reveal helpful in the development of new anti-cancer therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos P2X7/biossíntese , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Humanos , Neoplasias/metabolismo , Patentes como Assunto , Antagonistas do Receptor Purinérgico P2X/farmacologia , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...