Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32401497

RESUMO

Chemical ionization Orbitrap mass spectrometry (CI-Orbitrap) represents a promising new technique for gas-phase analysis in analytical and atmospheric chemistries mainly due to its very high mass resolving power. In this work, we performed the first side-by-side comparison between a CI-Orbitrap and the widely used atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF) using two different chemical ionization methods, i.e., acetate-ion-based (CH3COO-) and aminium-ion-based (n-C3H7NH3+) schemes. The capability of the CI-Orbitrap at accurately measuring low concentrations of gaseous species formed from the oxidation of α-pinene was explored. Although this study reveals a lack of linearity of the CI-Orbitrap when measuring product ions at very low concentrations (< 1 x 106 molecules cm-3), very good agreement between both techniques can be achieved by applying a newly developed linearity correction. It is experimentally shown that the correction function is independent of the reagent ion used. Thus, accurate quantification of organic compounds at concentrations as low as 1 x 105 molecules cm-3 by the CI-Orbitrap can be achieved. Finally, by means of tandem mass spectrometry, the unique capability of the Orbitrap allows the direct determination of the binding energy of cluster ions between analyte and reagent ions, that is needed for the assessment of a chosen ionization scheme.

2.
Environ Sci Technol ; 54(7): 3871-3880, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146813

RESUMO

Current mass spectrometry techniques for the online measurement of organic aerosol (OA) composition are subjected to either thermal/ionization-induced artifacts or limited mass resolving power, hindering accurate molecular characterization. Here, we combined the soft ionization capability of extractive electrospray ionization (EESI) and the ultrahigh mass resolution of Orbitrap for real-time, near-molecular characterization of OAs. Detection limits as low as tens of ng m-3 with linearity up to hundreds of µg m-3 at 0.2 Hz time resolution were observed for single- and mixed-component calibrations. The performance of the EESI-Orbitrap system was further evaluated with laboratory-generated secondary OAs (SOAs) and filter extracts of ambient particulate matter. The high mass accuracy and resolution (140 000 at m/z 200) of the EESI-Orbitrap system enable unambiguous identification of the aerosol components' molecular composition and allow a clear separation between adjacent peaks, which would be significantly overlapping if a medium-resolution (20 000) mass analyzer was used. Furthermore, the tandem mass spectrometry (MS2) capability provides valuable insights into the compound structure. For instance, the MS2 analysis of ambient OA samples and lab-generated biogenic SOAs points to specific SOA precursors in ambient air among a range of possible isomers based on fingerprint fragment ions. Overall, this newly developed and characterized EESI-Orbitrap system will advance our understanding of the formation and evolution of atmospheric aerosols.

3.
Environ Sci Technol ; 54(6): 3114-3120, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32022545

RESUMO

Northern China is regularly subjected to intense wintertime "haze events", with high levels of fine particles that threaten millions of inhabitants. While sulfate is a known major component of these fine haze particles, its formation mechanism remains unclear especially under highly polluted conditions, with state-of-the-art air quality models unable to reproduce or predict field observations. These haze conditions are generally characterized by simultaneous high emissions of SO2 and photosensitizing materials. In this study, we find that the excited triplet states of photosensitizers could induce a direct photosensitized oxidation of hydrated SO2 and bisulfite into sulfate S(VI) through energy transfer, electron transfer, or hydrogen atom abstraction. This photosensitized pathway appears to be a new and ubiquitous chemical route for atmospheric sulfate production. Compared to other aqueous-phase sulfate formation pathways with ozone, hydrogen peroxide, nitrogen dioxide, or transition-metal ions, the results also show that this photosensitized oxidation of S(IV) could make an important contribution to aerosol sulfate formation in Asian countries, particularly in China.


Assuntos
Poluentes Atmosféricos , Transtornos de Fotossensibilidade , Aerossóis , Ásia , China , Humanos , Material Particulado , Sulfatos
4.
Environ Sci Technol ; 54(3): 1395-1405, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31730747

RESUMO

Atmospheric brown carbon (BrC) is an important contributor to the radiative forcing of climate by organic aerosols. Because of the molecular diversity of BrC compounds and their dynamic transformations, it is challenging to predictively understand BrC optical properties. OH radical and O3 reactions, together with photolysis, lead to diminished light absorption and lower warming effects of biomass burning BrC. The effects of night-time aging on the optical properties of BrC aerosols are less known. To address this knowledge gap, night-time NO3 radical chemistry with tar aerosols from wood pyrolysis was investigated in a flow reactor. This study shows that the optical properties of BrC change because of transformations driven by reactions with the NO3 radical that form new absorbing species and lead to significant absorption enhancement over the ultraviolet-visible (UV-vis) range. The overnight aging increases the mass absorption coefficients of the BrC by a factor of 1.3-3.2 between 380 nm and 650 nm. Nitrated organic compounds, particularly nitroaromatics, were identified as the main products that contribute to the enhanced light absorption in the secondary BrC. Night-time aging of BrC aerosols represents an important source of secondary BrC and can have a pronounced effect on atmospheric chemistry and air pollution.

5.
Phys Chem Chem Phys ; 21(37): 20613-20627, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31528972

RESUMO

Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl2 and observed the in situ chemical reaction that oxidized Fe2+ to Fe3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 µm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe2+ fraction, α, out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0-20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observations and inferred key parameters as a function of RH including Henry's Law constant for ozone, HO3, and diffusion coefficients for ozone and iron, DO3 and DFe, respectively. We found that HO3 is higher in our xanthan gum/FeCl2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both DO3 and DFe. In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.

6.
Sci Total Environ ; 682: 138-150, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31112815

RESUMO

Nitrous acid (HONO) is an important precursor of hydroxyl radical (OH), which plays a key role in atmospheric chemistry. In this study, a shipboard-based measurement of HONO and related species in the offshore area of the East China Sea (ECS) was performed during June 2017. The HONO concentration ranged from 35 ppt to 1.95 ppb, with an average value of 0.44 ±â€¯0.25 ppb during the entire campaign. HONO displayed a relatively higher level (0.48 ±â€¯0.21 ppb) in the area within 30 km from the coastline (S1), whereas a lower level (0.40 ±â€¯0.18 ppb) in the area between 30 km and 100 km from the coastline (S2). Five distinct hotspots of HONO were identified, including Ningbo Port, Yangshan Port, the Yangtze River estuary, northwest of the Zhoushan city, and the area adjacent to Jinshan Chemical Industry Park, suggesting the impact of local vessel emissions and land industrial emissions on HONO formation. During the nighttime, the direct vessel emissions contributed on average 18% of the HONO concentration. The averaged conversion frequency of NO2-to-HONO (khet) estimated from six nighttime cases was 1.18 × 10-2 h-1. Daytime budget analysis showed that the unknown HONO production rate (Punknown) in S1 and S2 was 1.52 ppb h-1 and 1.14 ppb h-1, respectively. Punknown was related to a light-induced HONO source from NO2 on the sea surface and particulate nitrate. During the cruise campaign, the averaged daytime OH production rate from HONO photolysis was 1.35 ±â€¯0.69 ppb h-1, about 1.6 times higher than that from the O3 photolysis (0.87 ±â€¯0.55 ppb h-1), which suggested an important role of HONO in the atmospheric chemistry of the offshore area of ECS.

7.
Nat Commun ; 9(1): 3222, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089803

RESUMO

The authors became aware of a mistake in the data displayed in the original version of the paper. Specifically, for the calculation of the total emission estimates (i.e., from an average molecular weight and summed laboratory production values for all VOCs), the authors mistakenly added seasonal estimates to the annual estimates because both values are stored in the same variable of the code. Eventually, this additional sum resulted in a doubling of emission estimates.As a result of this, the following changes have been made to the originally published version of this Article:The fifth sentence of the abstract originally read "Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean." In the corrected version "46.4-184 Tg C yr-1" is replaced by "23.2-91.9 Tg C yr-1"The seventh sentence of the second paragraph of the Introduction originally read "We infer global emissions of 65.0-257 Tg yr-1 (46.4-184 Tg C yr-1) of organic vapors from the oceans into the marine atmosphere." In the corrected version, "65.0-257 Tg yr-1 (46.4-184 Tg C yr-1)" is replaced by "32.5-129 Tg C yr-1 (23.2-91.9 Tg C yr-1)".The last sentence of the first paragraph of the Results subheading "Marine isoprene emissions from interfacial photochemistry" originally read "In the same way, we infer total emissions of organic vapors from abiotic interfacial photochemistry in the range of 65.0-257 Tg yr-1 (46.4-184 Tg C yr-1), hence, contributing significantly to marine VOC emissions." In the corrected version, "65.0-257 Tg yr-1 (46.4-184 Tg C yr-1)" is replaced by "32.5-129 Tg C yr-1 (23.2-91.9 Tg C yr-1)".This has been corrected in both the PDF and the HTML versions of the Article. While the new estimates are lower than previously reported this error does not affect the original discussion or conclusions of the Article. The authors apologize for the confusion caused by this mistake.

8.
Chem Commun (Camb) ; 54(72): 10140-10143, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30132004

RESUMO

Metal-support electronic interactions were investigated in CO oxidation by using a Pd/CeO2 model catalyst with well-defined interfaces, and electron transfer from Pd cubes to CeO2 nanorods through interfaces triggered CO oxidation at low temperature where standalone Pd and CeO2 are inert.

9.
Environ Sci Technol ; 52(14): 7680-7688, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29898357

RESUMO

Atmospheric aerosol particles may contain light absorbing (brown carbon, BrC), triplet forming organic compounds that can sustain catalytic radical reactions and thus contribute to oxidative aerosol aging. We quantify UVA induced radical production initiated by imidazole-2-carboxaldehyde (IC), benzophenone (BPh). and 4-benzoylbenzoic acid (BBA) in the presence of the nonabsorbing organics citric acid (CA), shikimic acid (SA), and syringol (Syr) at varying mixing ratios. We observed a maximum HO2 release of 1013 molecules min-1 cm-2 at a mole ratio XBPh < 0.02 for BPh in CA. Mixtures of either IC or BBA with CA resulted in 1011-1012 molecules min-1 cm-2 of HO2 at mole ratios ( XIC and XBBA) between 0.01 and 0.15. HO2 release was affected by relative humidity ( RH) and film thickness suggesting coupled photochemical reaction and diffusion processes. Quantum yields of HO2 formed per absorbed photon for IC, BBA and BPh were between 10-7 and 5 × 10-5. The nonphotoactive organics, Syr and SA, increased HO2 production due to the reaction with the triplet excited species ensuing ketyl radical production. Rate coefficients of the triplet of IC with Syr and SA measured by laser flash photolysis experiments were kSyr = (9.4 ± 0.3) × 108 M-1 s-1 and kSA = (2.7 ± 0.5) × 107 M-1 s-1. A simple kinetic model was used to assess total HO2 and organic radical production in the condensed phase and to upscale to ambient aerosol, indicating that BrC induced radical production may amount to an upper limit of 20 and 200 M day-1 of HO2 and organic radical respectively, which is greater or in the same order of magnitude as the internal radical production from other processes, previously estimated to be around 15 M per day.


Assuntos
Compostos Orgânicos , Aerossóis , Difusão , Cinética , Oxirredução
10.
Phys Chem Chem Phys ; 20(29): 19416-19423, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29947624

RESUMO

Understanding the formation and transformation of sulphur-rich particles is of prime importance since they contribute to the global atmospheric sulphur budget. In this work, we performed a series of experiments on a photoactive organosulphur compound namely, methyl thioglycolate, as a model of an organosulphur species of marine origin. By investigating the photoproducts within levitated droplets, we showed that elemental sulphur (α-S8) and sulphate (SO42-) can be photochemically generated at the gas-liquid interface by heterogeneous interaction with gaseous O2 and H2O. These results demonstrate that the surface of levitated droplets facilitate the oxidation of methyl thioglycolate in the dark, while illumination is necessary to produce the oxidation in bulk experiments.

11.
Nat Commun ; 9(1): 2101, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844311

RESUMO

The surface of the oceans acts as a global sink and source for trace gases and aerosol particles. Recent studies suggest that photochemical reactions at this air/water interface produce organic vapors, enhancing particle formation in the atmosphere. However, current model calculations neglect this abiotic source of reactive compounds and account only for biological emissions. Here we show that interfacial photochemistry serves as a major abiotic source of volatile organic compounds (VOCs) on a global scale, capable to compete with emissions from marine biology. Our results indicate global emissions of 46.4-184 Tg C yr-1 of organic vapors from the oceans into the marine atmosphere and a potential contribution to organic aerosol mass of more than 60% over the remote ocean. Moreover, we provide global distributions of VOC formation potentials, which can be used as simple tools for field studies to estimate photochemical VOC emissions depending on location and season.

12.
Environ Sci Technol ; 52(9): 5191-5198, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29595957

RESUMO

Mineral dust particles have photochemical properties that can promote heterogeneous reactions on their surfaces and therefore alter atmospheric composition. Even though dust photocatalytic nature has received significant attention recently, most studies have focused on inorganic trace gases. Here, we investigated how light changes the chemical interactions between butanol and Arizona test dust, a proxy for mineral dust, under atmospheric conditions. Butanol uptake kinetics were measured, exploring the effects of UV light irradiation intensity (0-1.4 mW/cm2), relative humidity (0-10%), temperature (283-298 K), and butanol initial concentration (20-55 ppb). The composition of the gas phase was monitored by a high-resolution proton-transfer-reaction mass spectrometer (PTR-ToF-MS) operating in H3O+ mode. Water was observed to play a significant role, initially reducing heterogeneous processing of butanol but enhancing reaction rates once it evaporated. Gas phase products were identified, showing that surface reactions of adsorbed butanol led to the emission of a variety of carbonyl containing compounds. Under actinic light these compounds will photolyze and produce hydroxyl radicals, changing dust processing from a sink of VOC into a source of reactive compounds.


Assuntos
Poeira , Minerais , Arizona , Butanóis , Cinética
13.
Transl Oncol ; 11(1): 1-10, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29132012

RESUMO

BACKGROUND: Lymph node metastasis status is a prognostic factor for further lymph node involvement and for patient survival in breast cancer patients. Frozen section analysis of lymph nodes is a reliable method for detection of macro-metastases. However, this method is far less effective in detecting micro-metastases, requesting improved diagnostic procedures. METHODS: We investigated expression and truncation of ezrin in (i) sentinel lymph node metastases, (ii) unaffected axillary lymph nodes, (iii) primary breast tumors, and (iv) healthy glandular breast tissues using 2D gel electrophoresis, SDS-PAGE, and mass spectrometry in addition to Western blotting. RESULTS: Full-length ezrin (E1; amino acids 1-586) is present in all four investigated tissues. Two truncated ezrin forms, one missing about the first hundred amino acids (E2a) and the other lacking about 150 C-terminal amino acids (E2b) were detectable in primary tumor tissues and in sentinel lymph node metastases but not in glandular tissues. Strikingly, an ezrin truncation (E3) which consists approximately of amino acids 238-586 was found strongly expressed in all sentinel lymph node metastases. Moreover, an N-terminal ezrin fragment (E4) that consists approximately of amino acids 1-273 was identified in sentinel lymph node metastases as well. CONCLUSIONS: We show for the first time the existence of tissue-dependent specific ezrin truncations. The distinguished strong Western blot staining of ezrin E3 in sentinel lymph node metastases underlines its capability to substantiate the occurrence of lymph node (micro)metastases in breast cancer patients.

14.
Sci Rep ; 7(1): 12693, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978998

RESUMO

Organic interfaces that exist at the sea surface microlayer or as surfactant coatings on cloud droplets are highly concentrated and chemically distinct from the underlying bulk or overlying gas phase. Therefore, they may be potentially unique locations for chemical or photochemical reactions. Recently, photochemical production of volatile organic compounds (VOCs) was reported at a nonanoic acid interface however, subsequent secondary organic aerosol (SOA) particle production was incapable of being observed. We investigated SOA particle formation due to photochemical reactions occurring at an air-water interface in presence of model saturated long chain fatty acid and alcohol surfactants, nonanoic acid and nonanol, respectively. Ozonolysis of the gas phase photochemical products in the dark or under continued UV irradiation both resulted in nucleation and growth of SOA particles. Irradiation of nonanol did not yield detectable VOC or SOA production. Organic carbon functionalities of the SOA were probed using X-ray microspectroscopy and compared with other laboratory generated and field collected particles. Carbon-carbon double bonds were identified in the condensed phase which survived ozonolysis during new particle formation and growth. The implications of photochemical processes occurring at organic coated surfaces are discussed in the context of marine SOA particle atmospheric fluxes.

17.
Environ Sci Pollut Res Int ; 24(24): 19517-19523, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28681291

RESUMO

Real-time monitoring of individual particles from atmospheric aerosols was performed by means of a specifically developed single-particle fluorescence spectrometer (SPFS). The observed fluorescence was assigned to particles bearing polycyclic aromatic hydrocarbons (PAH). This assignment was supported by an intercomparison with classical speciation on filters followed by gas chromatography-mass spectrometry (GC-MS) analysis. As compared with daily averaged data, our time-resolved approach provided information about the physicochemical dynamics of the particles. In particular, distinctions were made between background emissions related to heating, and traffic peaks during rush hours. Also, the evolution of the peak fluorescence wavelength provided an indication of the aging of the particles during the day.


Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Material Particulado/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Adsorção , Aerossóis , Cidades , Cromatografia Gasosa-Espectrometria de Massas , Propriedades de Superfície , Suíça , Emissões de Veículos/análise
18.
Faraday Discuss ; 200: 59-74, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28598469

RESUMO

Films of biogenic compounds exposed to the atmosphere are ubiquitously found on the surfaces of cloud droplets, aerosol particles, buildings, plants, soils and the ocean. These air/water interfaces host countless amphiphilic compounds concentrated there with respect to in bulk water, leading to a unique chemical environment. Here, photochemical processes at the air/water interface of biofilm-containing solutions were studied, demonstrating abiotic VOC production from authentic biogenic surfactants under ambient conditions. Using a combination of online-APCI-HRMS and PTR-ToF-MS, unsaturated and functionalized VOCs were identified and quantified, giving emission fluxes comparable to previous field and laboratory observations. Interestingly, VOC fluxes increased with the decay of microbial cells in the samples, indicating that cell lysis due to cell death was the main source for surfactants and VOC production. In particular, irradiation of samples containing solely biofilm cells without matrix components exhibited the strongest VOC production upon irradiation. In agreement with previous studies, LC-MS measurements of the liquid phase suggested the presence of fatty acids and known photosensitizers, possibly inducing the observed VOC production via peroxy radical chemistry. Up to now, such VOC emissions were directly accounted to high biological activity in surface waters. However, the results obtained suggest that abiotic photochemistry can lead to similar emissions into the atmosphere, especially in less biologically-active regions. Furthermore, chamber experiments suggest that oxidation (O3/OH radicals) of the photochemically-produced VOCs leads to aerosol formation and growth, possibly affecting atmospheric chemistry and climate-related processes, such as cloud formation or the Earth's radiation budget.


Assuntos
Tensoativos/química , Compostos Orgânicos Voláteis/síntese química , Aerossóis/síntese química , Aerossóis/química , Atmosfera/química , Processos Fotoquímicos , Compostos Orgânicos Voláteis/química
19.
Sci Rep ; 7(1): 1161, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28442768

RESUMO

The uptake of formaldehyde (HCHO) on mineral dust affects its budget as well as particle properties, yet the process has not yet been fully investigate. Here, TiO2 and nitrate-doped TiO2 aerosols were used as proxies for mineral dust, and the uptake of HCHO was explored in a chamber under both dark and illuminated conditions. The uptake loss of HCHO on UV-illuminated aerosols is 2-9 times faster than its gaseous photolysis in our experimental system. The uptake coefficient in the range of 0.43-1.68 × 10-7 is 1-2 orders of magnitude higher than previous reports on model mineral dust particles. The reaction rate exhibits a Langmuir-Hinshelwood-type dependence on nitrate content and relative humidity, suggesting the competitive role of nitrate salts, water vapor and HCHO on the TiO2 surface. The reaction produces carbon dioxide as the main product and gaseous formic acid as an important intermediate. The hydroxyl radical produced on illuminated TiO2 primarily drives the fast oxidation of HCHO. The nitrate radical arising from the TiO2-catalyzed photoreaction of nitrate synergistically promotes the oxidation process. This study suggests a novel oxidation route for HCHO in the atmosphere, taking into account high abundance of both mineral dust and anthropogenic TiO2 aerosols.

20.
Sci Total Environ ; 593-594: 462-469, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28355592

RESUMO

In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m3 Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel-1, respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel-1 and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×1015particleskg-fuel-1, and particles with diameters less than 50nm dominated in total particle numbers. Traditional C2-C12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA