Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Nat Hum Behav ; 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927319

RESUMO

Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.

2.
EBioMedicine ; 83: 104189, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35930887

RESUMO

BACKGROUND: Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid that may impact atherosclerosis, and animal experimental studies suggest EETs protect cardiac function. Plasma EETs are mostly esterified to phospholipids and part of an active pool. To address the limited information about EETs and CVD in humans, we conducted a prospective study of total plasma EETs (free + esterified) and diabetes-related CVD in the Cardiovascular Health Study (CHS). METHODS: We measured 4 EET species and their metabolites, dihydroxyepoxyeicosatrienoic acids (DHETs), in plasma samples from 892 CHS participants with type 2 diabetes. We determined the association of EETs and DHETs with incident myocardial infarction (MI) and ischemic stroke using Cox regression. FINDINGS: During follow-up (median 7.5 years), we identified 150 MI and 134 ischemic strokes. In primary, multivariable analyses, elevated levels of each EET species were associated with non-significant lower risk of incident MI (for example, hazard ratio for 1 SD higher 14,15-EET: 0.86, 95% CI: 0.72-1.02; p=0.08). The EETs-MI associations became significant in analyses further adjusted for DHETs (hazard ratio for 1 SD higher 14,15-EET adjusted for 14,15-DHET: 0.76, 95% CI: 0.63-0.91; p=0.004). Elevated EET levels were associated with higher risk of ischemic stroke in primary but not secondary analyses. Three DHET species were associated with higher risk of ischemic stroke in all analyses. INTERPRETATION: Findings from this prospective study complement the extensive studies in animal models showing EETs protect cardiac function and provide new information in humans. Replication is needed to confirm the associations. FUNDING: US National Institutes of Health.

3.
Artigo em Inglês | MEDLINE | ID: mdl-35822943

RESUMO

INTRODUCTION: Obstructive sleep apnea (OSA) is a common disorder associated with increased risk for cardiovascular disease, diabetes, and premature mortality. There is strong clinical and epi-demiologic evidence supporting the importance of genetic factors influencing OSA, but limited data implicating specific genes. METHODS: Leveraging high depth genomic sequencing data from the National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) program and imputed genotype data from multiple population-based studies, we performed linkage analysis in the Cleve-land Family Study (CFS) followed by multi-stage gene-based association analyses in independent cohorts to search for rare variants contributing to OSA severity as assessed by the apnea-hypopnea index (AHI) in a total of 7,708 individuals of European ancestry. RESULTS: Linkage analysis in CFS identified a suggestive linkage peak on chromosome 7q31 (LOD=2.31). Gene-based analysis identified 21 non-coding rare variants in Caveolin-1 (CAV1) associated with lower AHI after accounting for multiple comparisons (p=7.4×10-8). These non-coding variants together significantly contributed to the linkage evidence (p<10-3). Follow-up anal-ysis revealed significant associations between these variants and increased CAV1 expression, and increased CAV1 expression in peripheral monocytes was associated with lower AHI (p=0.024) and higher minimum overnight oxygen saturation (p=0.007). CONCLUSION: Rare variants in CAV1, a membrane scaffolding protein essential in multiple cellular and metabolic functions, are associated with higher CAV1 gene expression and lower OSA severity, suggesting a novel target for modulating OSA severity.

4.
Hum Mol Genet ; 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35766891

RESUMO

RATIONALE: Genetic variation has a substantial contribution to chronic obstructive pulmonary disease (COPD) and lung function measurements. Heritability estimates using genome-wide genotyping data can be biased if analyses do not appropriately account for the non-uniform distribution of genetic effects across the allele frequency and linkage disequilibrium spectrum. In addition, the contribution of rare variants has been unclear. OBJECTIVES: We sought to assess the heritability of COPD and lung function using whole-genome sequence data from the Trans-Omics for Precision Medicine program. METHODS: Using the genome-based restricted maximum likelihood method, we partitioned the genome into bins based on minor allele frequency and linkage disequilibrium scores and estimated heritability of COPD, FEV1% predicted, and FEV1/FVC ratio in 11 051 European ancestry and 5853 African-American participants. MEASUREMENTS AND MAIN RESULTS: In European ancestry participants, the estimated heritability of COPD, FEV1% predicted, and FEV1/FVC ratio were 35.5%, 55.6% and 32.5%, of which 18.8%, 19.7%, 17.8% were from common variants, and 16.6%, 35.8%, and 14.6% were from rare variants. These estimates had wide confidence intervals, with common variants and some sets of rare variants showing a statistically significant contribution (P-value < 0.05). In African-Americans, common variant heritability was similar to European ancestry participants, but lower sample size precluded calculation of rare variant heritability. CONCLUSIONS: Our study provides updated and unbiased estimates of heritability for COPD and lung function, and suggests an important contribution of rare variants. Larger studies of more diverse ancestry will improve accuracy of these estimates.

5.
Am J Hum Genet ; 109(5): 857-870, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385699

RESUMO

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Pulmão , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco , Estados Unidos/epidemiologia
6.
Chest ; 161(5): 1155-1166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35104449

RESUMO

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/diagnóstico , Estudo de Associação Genômica Ampla , Humanos , Pulmão , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética
8.
Am J Respir Cell Mol Biol ; 66(5): 555-563, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35157553

RESUMO

Acute respiratory distress syndrome (ARDS) remains a significant problem in need of new pharmaceutical approaches to improve its resolution. Studies comparing gene expression signatures in rodents and humans with lung injury reveal conserved pathways, including MAPK (mitogen-activated protein kinase)/ERK (extracellular signal-related protein kinase) activation. In preclinical acute lung injury (ALI) models, inhibition of MAP2K1 (MAPK kinase 1)/MAP2K2 (MAPK kinase 2) improves measures of ALI. Myeloid cell deletion of MAP2K1 results in sustained MAP2K2 activation and nonresolving ALI, suggesting that MAP2K2 deactivation may be a key driver of ALI resolution. We used human genomic data from the iSPAAR (Identification of SNPs Predisposing to Altered Acute Lung Injury Risk) Consortium to assess genetic variants in MAP2K1 and MAP2K2 for association with mortality from ARDS. To determine the role of MAP2K2 in ALI recovery, we studied mice deficient in Map2k2 (Mek2-/-) and wild-type control mice in ALI models. We identified a MAP2K2 variant that was associated with death in ARDS and MAP2K2 expression. In Pseudomonas aeruginosa ALI, Mek2-/- mice had similar early alveolar neutrophilic recruitment but faster resolution of alveolar neutrophilia and vascular leak. Gene expression analysis revealed a role for MAP2K2 in promoting and sustaining select proinflammatory pathway activation in ALI. Bone marrow chimera studies indicate that leukocyte MAP2K2 is the key regulator of ALI duration. These studies implicate a role for MAP2K2 in ALI duration via transcriptional regulation of inflammatory programming with potential relevance to ARDS. Targeting leukocyte MAP2K2 may be an effective strategy to promote ALI resolution.


Assuntos
Lesão Pulmonar Aguda , MAP Quinase Quinase 2/metabolismo , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica , MAP Quinase Quinase 2/genética , Camundongos , Síndrome do Desconforto Respiratório/genética
9.
Am J Physiol Lung Cell Mol Physiol ; 322(4): L607-L616, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196901

RESUMO

We previously showed that pericyte-like cells derived from the FoxD1-lineage contribute to myofibroblasts following bleomycin-induced lung injury. However, their functional significance in lung fibrosis remains unknown. In this study, we used a model of lung pericyte-like cell ablation to test the hypothesis that pericyte-like cell ablation attenuates lung fibrosis in bleomycin-induced lung injury. Lung fibrosis was induced by intratracheal instillation of bleomycin. To ablate pericyte-like cells in the lung, diphtheria toxin (DT) was administered to Foxd1-Cre;Rosa26-iDTR mice at two different phases of bleomycin-induced lung injury. For early ablation, we coadministered bleomycin with DT and harvested mice at days 7 and 21. To test the effect of ablation after acute injury, we delivered DT 7 days after bleomycin administration. We assessed fibrosis by lung hydroxyproline content and semiquantitative analysis of picrosirius red staining. We performed bronchoalveolar lavage to determine cell count and differential. We also interrogated mRNA expression of fibrosis-related genes in whole lung RNA. Compared with DT-insensitive littermates where pericyte-like cells were not ablated, DT-sensitive animals exhibited no difference in fibrosis at day 21 both in the early and late pericyte ablation models. However, early ablation of pericytes reduced acute lung inflammation, as indicated by decreased inflammatory cells. Our data confirm a role for pericytes in regulating pulmonary inflammation in early lung injury.


Assuntos
Lesão Pulmonar , Fibrose Pulmonar , Animais , Bleomicina/farmacologia , Líquido da Lavagem Broncoalveolar , Hidroxiprolina , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Lesão Pulmonar/terapia , Camundongos , Camundongos Endogâmicos C57BL , Pericitos/metabolismo , Fibrose Pulmonar/patologia
10.
Sci Rep ; 12(1): 1472, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35087136

RESUMO

Obstructive sleep apnea (OSA) is a common disorder associated with increased risk of cardiovascular disease and mortality. Iron and heme metabolism, implicated in ventilatory control and OSA comorbidities, was associated with OSA phenotypes in recent admixture mapping and gene enrichment analyses. However, its causal contribution was unclear. In this study, we performed pathway-level transcriptional Mendelian randomization (MR) analysis to investigate the causal relationships between iron and heme related pathways and OSA. In primary analysis, we examined the expression level of four iron/heme Reactome pathways as exposures and four OSA traits as outcomes using cross-tissue cis-eQTLs from the Genotype-Tissue Expression portal and published genome-wide summary statistics of OSA. We identify a significant putative causal association between up-regulated heme biosynthesis pathway with higher sleep time percentage of hypoxemia (p = 6.14 × 10-3). This association is supported by consistency of point estimates in one-sample MR in the Multi-Ethnic Study of Atherosclerosis using high coverage DNA and RNA sequencing data generated by the Trans-Omics for Precision Medicine project. Secondary analysis for 37 additional iron/heme Gene Ontology pathways did not reveal any significant causal associations. This study suggests a causal association between increased heme biosynthesis and OSA severity.


Assuntos
Heme/biossíntese , Redes e Vias Metabólicas/genética , Apneia Obstrutiva do Sono/epidemiologia , Idoso , Conjuntos de Dados como Assunto , Feminino , Predisposição Genética para Doença , Humanos , Ferro/metabolismo , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Polissonografia , Locos de Características Quantitativas , Índice de Gravidade de Doença , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/genética , Regulação para Cima
11.
Blood ; 139(3): 357-368, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34855941

RESUMO

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Assuntos
Hematopoiese Clonal , Doença Pulmonar Obstrutiva Crônica/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Razão de Chances , Doença Pulmonar Obstrutiva Crônica/etiologia , Fatores de Risco , Fumar/efeitos adversos , Sequenciamento Completo do Exoma
12.
JAMA ; 326(22): 2287-2298, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34905031

RESUMO

Importance: Chronic lung diseases are a leading cause of morbidity and mortality. Unlike chronic obstructive pulmonary disease, clinical outcomes associated with proportional reductions in expiratory lung volumes without obstruction, otherwise known as preserved ratio impaired spirometry (PRISm), are poorly understood. Objective: To examine the prevalence, correlates, and clinical outcomes associated with PRISm in US adults. Design, Setting, and Participants: The National Heart, Lung, and Blood Institute (NHLBI) Pooled Cohorts Study was a retrospective study with harmonized pooled data from 9 US general population-based cohorts (enrollment, 65 251 participants aged 18 to 102 years of whom 53 701 participants had valid baseline lung function) conducted from 1971-2011 (final follow-up, December 2018). Exposures: Participants were categorized into mutually exclusive groups by baseline lung function. PRISm was defined as the ratio of forced expiratory volume in the first second to forced vital capacity (FEV1:FVC) greater than or equal to 0.70 and FEV1 less than 80% predicted; obstructive spirometry FEV1:FVC ratio of less than 0.70; and normal spirometry FEV1:FVC ratio greater than or equal to 0.7 and FEV1 greater than or equal to 80% predicted. Main Outcomes and Measures: Main outcomes were all-cause mortality, respiratory-related mortality, coronary heart disease (CHD)-related mortality, respiratory-related events (hospitalizations and mortality), and CHD-related events (hospitalizations and mortality) classified by adjudication or validated administrative criteria. Absolute risks were adjusted for age and smoking status. Poisson and Cox proportional hazards models comparing PRISm vs normal spirometry were adjusted for age, sex, race and ethnicity, education, body mass index, smoking status, cohort, and comorbidities. Results: Among all participants (mean [SD] age, 53.2 [15.8] years, 56.4% women, 48.5% never-smokers), 4582 (8.5%) had PRISm. The presence of PRISm relative to normal spirometry was significantly associated with obesity (prevalence, 48.3% vs 31.4%; prevalence ratio [PR], 1.68 [95% CI, 1.55-1.82]), underweight (prevalence, 1.4% vs 1.0%; PR, 2.20 [95% CI, 1.72-2.82]), female sex (prevalence, 60.3% vs 59.0%; PR, 1.07 [95% CI, 1.01-1.13]), and current smoking (prevalence, 25.2% vs 17.5%; PR, 1.33 [95% CI, 1.22-1.45]). PRISm, compared with normal spirometry, was significantly associated with greater all-cause mortality (29.6/1000 person-years vs 18.0/1000 person-years; difference, 11.6/1000 person-years [95% CI, 10.0-13.1]; adjusted hazard ratio [HR], 1.50 [95% CI, 1.42-1.59]), respiratory-related mortality (2.1/1000 person-years vs 1.0/1000 person-years; difference, 1.1/1000 person-years [95% CI, 0.7-1.6]; adjusted HR, 1.95 [95% CI, 1.54-2.48]), CHD-related mortality (5.4/1000 person-years vs 2.6/1000 person-years; difference, 2.7/1000 person-years [95% CI, 2.1-3.4]; adjusted HR, 1.55 [95% CI, 1.36-1.77]), respiratory-related events (12.2/1000 person-years vs 6.0/1000 person-years; difference, 6.2/1000 person-years [95% CI, 4.9-7.5]; adjusted HR, 1.90 [95% CI, 1.69-2.14]), and CHD-related events (11.7/1000 person-years vs 7.0/1000 person-years; difference, 4.7/1000 person-years [95% CI, 3.7-5.8]; adjusted HR, 1.30 [95% CI, 1.18-1.42]). Conclusions and Relevance: In a large, population-based sample of US adults, baseline PRISm, compared with normal spirometry, was associated with a small but statistically significant increased risk for mortality and adverse cardiovascular and respiratory outcomes. Further research is needed to explore whether this association is causal.


Assuntos
Volume Expiratório Forçado , Pneumopatias/fisiopatologia , Espirometria , Capacidade Vital , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Cardiovasculares/etiologia , Feminino , Humanos , Pulmão/fisiopatologia , Pneumopatias/complicações , Pneumopatias/epidemiologia , Pneumopatias/mortalidade , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Estados Unidos/epidemiologia
13.
Sci Rep ; 11(1): 19365, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588469

RESUMO

Genome-wide association studies have identified numerous common genetic variants associated with spirometric measures of pulmonary function, including forced expiratory volume in one second (FEV1), forced vital capacity, and their ratio. However, variants with lower minor allele frequencies are less explored. We conducted a large-scale gene-smoking interaction meta-analysis on exonic rare and low-frequency variants involving 44,429 individuals of European ancestry in the discovery stage and sought replication in the UK BiLEVE study with 45,133 European ancestry samples and UK Biobank study with 59,478 samples. We leveraged data on cigarette smoking, the major environmental risk factor for reduced lung function, by testing gene-by-smoking interaction effects only and simultaneously testing the genetic main effects and interaction effects. The most statistically significant signal that replicated was a previously reported low-frequency signal in GPR126, distinct from common variant associations in this gene. Although only nominal replication was obtained for a top rare variant signal rs142935352 in one of the two studies, interaction and joint tests for current smoking and PDE3B were significantly associated with FEV1. This study investigates the utility of assessing gene-by-smoking interactions and underscores their effects on potential pulmonary function.


Assuntos
Fumar Cigarros/epidemiologia , Volume Expiratório Forçado/genética , Interação Gene-Ambiente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fumar Cigarros/efeitos adversos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Conjuntos de Dados como Assunto , Éxons/genética , Estudos de Viabilidade , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pulmão/fisiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Fatores de Risco
14.
Genome Med ; 13(1): 136, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446064

RESUMO

BACKGROUND: Sleep-disordered breathing is a common disorder associated with significant morbidity. The genetic architecture of sleep-disordered breathing remains poorly understood. Through the NHLBI Trans-Omics for Precision Medicine (TOPMed) program, we performed the first whole-genome sequence analysis of sleep-disordered breathing. METHODS: The study sample was comprised of 7988 individuals of diverse ancestry. Common-variant and pathway analyses included an additional 13,257 individuals. We examined five complementary traits describing different aspects of sleep-disordered breathing: the apnea-hypopnea index, average oxyhemoglobin desaturation per event, average and minimum oxyhemoglobin saturation across the sleep episode, and the percentage of sleep with oxyhemoglobin saturation < 90%. We adjusted for age, sex, BMI, study, and family structure using MMSKAT and EMMAX mixed linear model approaches. Additional bioinformatics analyses were performed with MetaXcan, GIGSEA, and ReMap. RESULTS: We identified a multi-ethnic set-based rare-variant association (p = 3.48 × 10-8) on chromosome X with ARMCX3. Additional rare-variant associations include ARMCX3-AS1, MRPS33, and C16orf90. Novel common-variant loci were identified in the NRG1 and SLC45A2 regions, and previously associated loci in the IL18RAP and ATP2B4 regions were associated with novel phenotypes. Transcription factor binding site enrichment identified associations with genes implicated with respiratory and craniofacial traits. Additional analyses identified significantly associated pathways. CONCLUSIONS: We have identified the first gene-based rare-variant associations with objectively measured sleep-disordered breathing traits. Our results increase the understanding of the genetic architecture of sleep-disordered breathing and highlight associations in genes that modulate lung development, inflammation, respiratory rhythmogenesis, and HIF1A-mediated hypoxic response.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Síndromes da Apneia do Sono/diagnóstico , Síndromes da Apneia do Sono/etiologia , Sequenciamento Completo do Genoma , Alelos , Sequenciamento de Cromatina por Imunoprecipitação , Feminino , Regulação da Expressão Gênica , Genótipo , Humanos , Masculino , National Heart, Lung, and Blood Institute (U.S.) , Fenótipo , Medicina de Precisão/métodos , Pesquisa , Transdução de Sinais , Síndromes da Apneia do Sono/metabolismo , Estados Unidos
15.
HGG Adv ; 2(3)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34337551

RESUMO

Whole-genome sequencing (WGS) and whole-exome sequencing studies have become increasingly available and are being used to identify rare genetic variants associated with health and disease outcomes. Investigators routinely use mixed models to account for genetic relatedness or other clustering variables (e.g., family or household) when testing genetic associations. However, no existing tests of the association of a rare variant with a binary outcome in the presence of correlated data control the type 1 error where there are (1) few individuals harboring the rare allele, (2) a small proportion of cases relative to controls, and (3) covariates to adjust for. Here, we address all three issues in developing a framework for testing rare variant association with a binary trait in individuals harboring at least one risk allele. In this framework, we estimate outcome probabilities under the null hypothesis and then use them, within the individuals with at least one risk allele, to test variant associations. We extend the BinomiRare test, which was previously proposed for independent observations, and develop the Conway-Maxwell-Poisson (CMP) test and study their properties in simulations. We show that the BinomiRare test always controls the type 1 error, while the CMP test sometimes does not. We then use the BinomiRare test to test the association of rare genetic variants in target genes with small-vessel disease (SVD) stroke, short sleep, and venous thromboembolism (VTE), in whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program.

16.
STAR Protoc ; 2(2): 100582, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34002169

RESUMO

Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells (PBMCs) allows in-depth assessment of transcriptional changes in immune cells of patients with COVID-19. However, collecting, processing, and analyzing samples from patients with COVID-19 pose many challenges because blood samples may contain infectious virus, identification of immune cell subtypes can be difficult, and biological interpretation of analytical results is complex. To address these issues, we describe a protocol for sample processing, sorting, methanol fixation, and scRNA-seq analysis of PBMCs from frozen buffy coat samples from patients with COVID-19. For complete details on the use and execution of this protocol, please refer to (Yao et al., 2021).


Assuntos
COVID-19/imunologia , Leucócitos Mononucleares/imunologia , RNA Viral/genética , SARS-CoV-2/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , COVID-19/sangue , COVID-19/genética , COVID-19/virologia , Humanos , RNA Viral/sangue , SARS-CoV-2/genética , Manejo de Espécimes
17.
Influenza Other Respir Viruses ; 15(5): 569-572, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028169

RESUMO

COVID-19 has significant case fatality. Glucocorticoids are the only treatment shown to improve survival, but only among patients requiring supplemental oxygen. WHO advises patients to seek medical care for "trouble breathing," but hypoxemic patients frequently have no respiratory symptoms. Our cohort study of hospitalized COVID-19 patients shows that respiratory symptoms are uncommon and not associated with mortality. By contrast, objective signs of respiratory compromise-oxygen saturation and respiratory rate-are associated with markedly elevated mortality. Our findings support expanding guidelines to include at-home assessment of oxygen saturation and respiratory rate in order to expedite life-saving treatments patients to high-risk COVID-19 patients.


Assuntos
COVID-19 , Oxigênio/sangue , Taxa Respiratória , Doenças Respiratórias/diagnóstico , Adulto , Idoso , COVID-19/mortalidade , Estudos de Coortes , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade
18.
Nat Commun ; 12(1): 2830, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990564

RESUMO

Coffee and tea are extensively consumed beverages worldwide which have received considerable attention regarding health. Intake of these beverages is consistently linked to, among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle factors on disease onset. Here we report the results from epigenome-wide association studies (EWAS) on coffee and tea consumption in 15,789 participants of European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value <1.1×10-7), which annotated to the AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and PHGDH genes. Among them, cg14476101 is significantly associated with expression of the PHGDH and risk of fatty liver disease. Knockdown of PHGDH expression in liver cells shows a correlation with expression levels of genes associated with circulating lipids, suggesting a role of PHGDH in hepatic-lipid metabolism. EWAS meta-analysis on tea consumption reveals no significant association, only two CpGs annotated to CACNA1A and PRDM16 genes show suggestive association (P-value <5.0×10-6). These findings indicate that coffee-associated changes in DNA methylation levels may explain the mechanism of action of coffee consumption in conferring risk of diseases.


Assuntos
Café/efeitos adversos , Metilação de DNA , Epigenoma , Chá/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Ilhas de CpG , Epigênese Genética , Feminino , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Fígado/enzimologia , Masculino , Pessoa de Meia-Idade , Fosfoglicerato Desidrogenase/antagonistas & inibidores , Fosfoglicerato Desidrogenase/genética , Fatores de Risco
19.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34015820

RESUMO

Large datasets of hundreds to thousands of individuals measuring RNA-seq in observational studies are becoming available. Many popular software packages for analysis of RNA-seq data were constructed to study differences in expression signatures in an experimental design with well-defined conditions (exposures). In contrast, observational studies may have varying levels of confounding transcript-exposure associations; further, exposure measures may vary from discrete (exposed, yes/no) to continuous (levels of exposure), with non-normal distributions of exposure. We compare popular software for gene expression-DESeq2, edgeR and limma-as well as linear regression-based analyses for studying the association of continuous exposures with RNA-seq. We developed a computation pipeline that includes transformation, filtering and generation of empirical null distribution of association P-values, and we apply the pipeline to compute empirical P-values with multiple testing correction. We employ a resampling approach that allows for assessment of false positive detection across methods, power comparison and the computation of quantile empirical P-values. The results suggest that linear regression methods are substantially faster with better control of false detections than other methods, even with the resampling method to compute empirical P-values. We provide the proposed pipeline with fast algorithms in an R package Olivia, and implemented it to study the associations of measures of sleep disordered breathing with RNA-seq in peripheral blood mononuclear cells in participants from the Multi-Ethnic Study of Atherosclerosis.


Assuntos
Benchmarking/métodos , RNA-Seq , Análise de Sequência de RNA , Software , Algoritmos , Aterosclerose/epidemiologia , Aterosclerose/etiologia , Aterosclerose/metabolismo , Simulação por Computador , Suscetibilidade a Doenças , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fenótipo , Medição de Risco , Fatores de Risco , Navegador
20.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L130-L143, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909500

RESUMO

Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs of other diseases have shown an approximately 10-fold overrepresentation of nonsynonymous variants, despite limited exonic coverage on genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD, including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15q, four coding variants were conditionally significant (P < 0.00015) when adjusting for lead GWAS single-nucleotide polymorphisms A common gasdermin B (GSDMB) splice variant (rs11078928) previously associated with a decreased risk for asthma was nominally associated with a decreased risk for COPD [minor allele frequency (MAF) = 0.46, P = 1.8e-4]. Two stop variants in coiled-coil α-helical rod protein 1 (CCHCR1), a gene involved in regulating cell proliferation, were associated with COPD (both P < 0.0001). The SERPINA1 Z allele was associated with a random-effects odds ratio of 1.43 for COPD (95% confidence interval = 1.17-1.74), though with marked heterogeneity across studies. Overall, COPD-associated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In conclusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future studies are needed to identify rarer variants and further define the role of coding variants in COPD pathogenesis.


Assuntos
Exoma/genética , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Regulação da Expressão Gênica , Humanos , Metanálise como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...