Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
J Phys Chem Lett ; 11(7): 2751-2758, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32187494


Dense arrays of high-aspect-ratio (HAR) vertical nanostructures are essential elements of microelectronic components, photovoltaics, nanoelectromechanical, and energy storage devices. One of the critical challenges in manufacturing the HAR nanostructures is to prevent their capillary-induced aggregation during solution-based nanofabrication processes. Despite the importance of controlling capillary effects, the detailed mechanisms of how a solution interacts with nanostructures are not well understood. Using in situ liquid cell transmission electron microscopy (TEM), we track the dynamics of nanoscale drying process of HAR silicon (Si) nanopillars in real-time and identify a new mechanism responsible for pattern collapse and nanostructure aggregation. During drying, deflection and aggregation of nanopillars are driven by thin-liquid-film instability, which results in much stronger capillary interactions between the nanopillars than the commonly proposed lateral meniscus interaction forces. The importance of thin-film instability in dewetting has been overlooked in prevalent theories on elastocapillary aggregation. The new dynamic mechanism revealed by in situ visualization is essential for the development of robust nanofabrication processes.

J Nanosci Nanotechnol ; 15(2): 1162-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353627


We have studied ion-induced effects in the near-surface region of two eutectic systems. Gold and Silver nanodots on Silicon (100) substrate were prepared by thermal evaporation under high vacuum condition at room temperature (RT) and irradiated with 1.5 MeV Au2+ ions at flux ~1.25 x 10(11) ions cm-2 s-1 also at RT. These samples were characterized using cross-sectional transmission electron microscopy (XTEM) and associated techniques. We have observed that gold act as catalysis in the recrystallization process of ion-beam-induced amorphous Si at room temperature and also large mass transport up to a distance of about 60 nm into the substrate. Mass transport is much beyond the size (~ 6-20 nm) of these Au nanodots. Ag nanoparticles with diameter 15-45 nm are half-way embedded into the Si substrate and does not stimulate in recrystallization. In case of Au nanoparticles upon ion irradiation, mixed phase formed only when the local composition and transient temperature during irradiation is sufficient to cause mixing in accordance with the Au-Si stable phase diagram. Spectroscopic imaging in the scanning TEM using spatially resolved electron energy loss spectroscopy provides one of the few ways to measure the real-space nanoscale mixing.

Nanoscale ; 7(19): 9062-74, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25921601


Artificial enzyme mimetics have attracted immense interest recently because natural enzymes undergo easy denaturation under environmental conditions restricting practical usefulness. We report for the first time chalcopyrite CuZnFeS (CZIS) alloyed nanocrystals (NCs) as novel biomimetic catalysts with efficient intrinsic peroxidase-like activity. Novel peroxidase activities of CZIS NCs have been evaluated by catalytic oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2). CZIS NCs demonstrate the synergistic effect of elemental composition and photoactivity towards peroxidase-like activity. The quaternary CZIS NCs show enhanced intrinsic peroxidase-like activity compared to the binary NCs with the same constituent elements. Intrinsic peroxidase-like activity has been correlated with the energy band position of CZIS NCs extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy. Kinetic analyses indicate Michaelis-Menten enzyme kinetic model catalytic behavior describing the rate of the enzymatic reaction by correlating the reaction rate with substrate concentration. Typical color reactions arising from the catalytic oxidation of TMB over CZIS NCs with H2O2 have been utilized to establish a simple and sensitive colorimetric assay for detection of H2O2 and glucose. CZIS NCs are recyclable catalysts showing high efficiency in multiple uses. Our study may open up the possibility of designing new photoactive multi-component alloyed NCs as enzyme mimetics in biotechnology applications.

Materiais Biomiméticos/química , Técnicas Biossensoriais , Cobre/química , Glucose/análise , Peróxido de Hidrogênio/análise , Nanopartículas/química , Benzidinas/química , Materiais Biomiméticos/metabolismo , Catálise , Colorimetria , Cinética , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Oxirredução , Peroxidase/química , Peroxidase/metabolismo
Small ; 11(15): 1829-39, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25504671


Quaternary alloyed nanocrystals (NCs) composed of earth abundant, environment friendly elements are of interest for energy-harvesting applications. These complex NCs are useful as catalysts for the degradation of multiple refractory organic pollutants as well as nitro-organic reduction at a rapid rate. Here, a remarkably fast (∼30 s) and facile synthesis of crystalline quaternary chalcopyrite copper-zinc-iron-sulfide (CZIS) NCs is reported. These NCs show excellent catalytic properties by degrading a number of refractory organic dyes and converting nitro-compounds at a rapid rate. The valence and conduction band information of the newly designed NCs are extracted using scanning tunneling spectroscopy and ultraviolet photoelectron spectroscopy, which reveal energy levels suitable for performing redox chemistry by generating reactive radicals establishing NCs as efficient catalyst with multiple uses. Rapid synthesis of high quality phase-controlled CZIS NCs with robust catalytic activities could be useful for organic waste treatment.

Phys Chem Chem Phys ; 16(31): 16730-9, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25000224


Dendritic silver nanostructures were prepared by a simple dip-and-rinse galvanic displacement reaction directly on germanium surfaces. The formation and evolution of these dendrites were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX). The present results clearly show a new type of heteroepitaxy, where the large lattice mismatch between silver and germanium is accommodated at the interface by the formation of low-energy asymmetric tilt boundaries. The overgrown samples reduce the strain by introducing crystal defects. Additionally, by employing cathodoluminescence (CL) spectroscopy and imaging with a field emission gun scanning electron microscope (FEG-SEM), we provide information on the surface plasmon assisted photon emission of a stack of Ag hexagonal nanostructures. Surface enhanced Raman scattering (SERS) studies show the suitability of such Ag nanodendritic structures as SERS active substrates.