Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 244: 617-626, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30384067

RESUMO

Plastic debris carry fouling a variety of class-size organisms, among them harmful microorganisms that potentially play a role in the dispersal of allochthonous species and toxic compounds with ecological impacts on the marine environment and human health. We analyzed samples of marine plastics floating at the sea surface using a molecular qPCR assay to quantify the attached microalgal taxa, in particular, harmful species. Diatoms were the most abundant group of plastic colonizers with maximum abundance of 8.2 × 104 cells cm-2 of plastics, the maximum abundance of dinoflagellates amounted to 1.1 × 103 cells cm-2 of plastics. The most abundant harmful microalgal taxon was the diatom Pseudo-nitzschia spp., including at least 12 toxic species, and the dinoflagellate Ostreopsis cf. ovata with 6606 and 259 cells cm-2, respectively. The abundance of other harmful microalgal species including the toxic allochthonous dinoflagellate Alexandrium pacificum ranged from 1 to 73 cells cm-2. In the present study, a direct relationship between the abundance of harmful algal species colonizing the plastic substrates and their toxin production was found. The levels of potential toxins on plastic samples ranged from 101 to 102 ng cm-2, considering the various toxin families produced by the colonized harmful microalgal species. We also measured the rate of adhesion by several target microalgal species. It ranged from 1.8 to 0.3 day-1 demonstrating the capacity of plastic substrate colonizing rapidly by microalgae. The present study reports the first estimates of molecular quantification of microorganisms including toxin producing species that can colonize plastics. Such findings provide important insights for improving the monitoring practice of plastics and illustrate how the epi-plastic community can exacerbate the harmful effects of plastics by dispersal, acting as an alien and toxic species carrier and potentially being ingested through the marine trophic web.


Assuntos
Diatomáceas/crescimento & desenvolvimento , Dinoflagelados/crescimento & desenvolvimento , Monitoramento Ambiental , Toxinas Marinhas/análise , Microalgas/crescimento & desenvolvimento , Plásticos/química , Diatomáceas/isolamento & purificação , Dinoflagelados/isolamento & purificação , Humanos , Microalgas/isolamento & purificação , Resíduos/análise
2.
Mar Pollut Bull ; 129(1): 212-221, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29680540

RESUMO

The present study evaluates an optical bioassay based on green photosynthetic microalgae as a promising alternative for monitoring of relevant seawater pollutants. Photosystem II fluorescence parameters from several microalgae species were examined in the presence of three common marine pesticides that act as photosynthesis inhibitors. The three pollutants were detected within 10 min in concentrations between ng/L-µg/L. The different algae species showed slightly diverse pesticide sensitivities, being Chlorella mirabilis the most sensitive one. Potential interferences due to oil-spill pollutants were discarded. The lipid content was characterized to identify microorganisms with suitable mechanisms that could facilitate stress acclimatization. C. mirabilis presented elevated content of unsaturated lipids, showing a promising potential for biosensing in saline stress conditions. The optimized microalgae-based bioassay was preliminarily incorporated into a marine buoy for autonomous pre-screening of pesticides in coastal areas, demonstrating its suitability for real-time monitoring of marine water and quantitative evaluation of total biotoxicity.


Assuntos
Chlorella/efeitos dos fármacos , Monitoramento Ambiental/métodos , Microalgas/efeitos dos fármacos , Praguicidas/análise , Complexo de Proteína do Fotossistema II/metabolismo , Poluentes Químicos da Água/análise , Bioensaio , Chlorella/metabolismo , Medições Luminescentes , Microalgas/metabolismo , Fotossíntese/efeitos dos fármacos , Água do Mar/química
3.
Microorganisms ; 5(4)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144421

RESUMO

Harmful algal blooms represent a severe issue worldwide. They affect ecosystem functions and related services and goods, with consequences on human health and socio-economic activities. This study reports new data on paralytic shellfish toxins (PSTs) from Sardinia and Sicily (Italy), the largest Mediterranean islands where toxic events, mainly caused by Alexandrium species (Dinophyceae), have been ascertained in mussel farms since the 2000s. The toxicity of the A. minutum, A. tamarense and A. pacificum strains, established from the isolation of vegetative cells and resting cysts, was determined by high performance liquid chromatography (HPLC). The analyses indicated the highest toxicity for A. pacificum strains (total PSTs up to 17.811 fmol cell-1). The PSTs were also assessed in a strain of A. tamarense. The results encourage further investigation to increase the knowledge of toxic species still debated in the Mediterranean. This study also reports new data on microcystins (MCs) and ß-N-methylamino-L-alanine (BMAA) from a Sardinian artificial lake (Lake Bidighinzu). The presence of MCs and BMAA was assessed in natural samples and in cell cultures by enzyme-linked immunosorbent assay (ELISA). BMAA positives were found in all the analysed samples with a maximum of 17.84 µg L-1. The obtained results added further information on cyanotoxins in Mediterranean reservoirs, particularly BMAA, which have not yet been thoroughly investigated.

4.
Environ Sci Technol ; 49(24): 14230-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26580419

RESUMO

Paralytic shellfish poisoning (PSP) is a serious human illness caused by the ingestion of seafood contaminated with saxitoxin and its derivatives (STXs). These toxins are produced by some species of marine dinoflagellates within the genus Alexandrium. In the Mediterranean Sea, toxic Alexandrium spp. blooms, especially of A. minutum, are frequent and intense with negative impact to coastal ecosystem, aquaculture practices and other economic activities. We conducted a large scale study on the sxt gene and toxin distribution and content in toxic dinoflagellate A. minutum of the Mediterranean Sea using both quantitative PCR (qPCR) and HILIC-HRMS techniques. We developed a new qPCR assay for the estimation of the sxtA1 gene copy number in seawater samples during a bloom event in Syracuse Bay (Mediterranean Sea) with an analytical sensitivity of 2.0 × 10° sxtA1 gene copy number per reaction. The linear correlation between sxtA1 gene copy number and microalgal abundance and between the sxtA1 gene and STX content allowed us to rapidly determine the STX-producing cell concentrations of two Alexandrium species in environmental samples. In these samples, the amount of sxtA1 gene was in the range of 1.38 × 10(5) - 2.55 × 10(8) copies/L and the STX concentrations ranged from 41-201 nmol/L. This study described a potential PSP scenario in the Mediterranean Sea.


Assuntos
Dinoflagelados/patogenicidade , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Saxitoxina/genética , Intoxicação por Frutos do Mar , Dinoflagelados/genética , Ecossistema , Marcadores Genéticos , Humanos , Mar Mediterrâneo , Microalgas/genética , Saxitoxina/toxicidade , Água do Mar/parasitologia , Intoxicação por Frutos do Mar/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA