Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 6(55)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452106

RESUMO

The developmental origins of memory T cells remain incompletely understood. During the expansion phase of acute viral infection, we identified a distinct subset of virus-specific CD8+ T cells that possessed distinct characteristics including expression of CD62L, T cell factor 1 (TCF-1), and Eomesodermin; relative quiescence; expression of activation markers; and features of limited effector differentiation. These cells were a quantitatively minor subpopulation of the TCF-1+ pool and exhibited self-renewal, heightened DNA damage surveillance activity, and preferential long-term recall capacity. Despite features of memory and somewhat restrained proliferation during the expansion phase, this subset displayed evidence of stronger TCR signaling than other responding CD8+ T cells, coupled with elevated expression of multiple inhibitory receptors including programmed cell death 1 (PD-1), lymphocyte activating gene 3 (LAG-3), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), CD5, and CD160. Genetic ablation of PD-1 and LAG-3 compromised the formation of this CD62Lhi TCF-1+ subset and subsequent CD8+ T cell memory. Although central memory phenotype CD8+ T cells were formed in the absence of these cells, subsequent memory CD8+ T cell recall responses were compromised. Together, these results identify an important link between genome integrity maintenance and CD8+ T cell memory. Moreover, the data indicate a role for inhibitory receptors in preserving key memory CD8+ T cell precursors during initial activation and differentiation. Identification of this rare subpopulation within the memory CD8+ T cell precursor pool may help reconcile models of the developmental origin of long-term CD8+ T cell memory.

2.
medRxiv ; 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32995826

RESUMO

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8 T cells that correlated with use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct and implicate CD8 T cells in clinical presentation and trajectory of MIS-C.

3.
Science ; 369(6508)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32669297

RESUMO

Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19 patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. Our analyses identified three immunotypes associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.


Assuntos
Linfócitos B/imunologia , Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Subpopulações de Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/sangue , Feminino , Humanos , Memória Imunológica , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Pandemias , Plasmócitos/imunologia , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores de Tempo , Adulto Jovem
4.
bioRxiv ; 2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32511371

RESUMO

COVID-19 has become a global pandemic. Immune dysregulation has been implicated, but immune responses remain poorly understood. We analyzed 71 COVID-19 patients compared to recovered and healthy subjects using high dimensional cytometry. Integrated analysis of ~200 immune and >30 clinical features revealed activation of T cell and B cell subsets, but only in some patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses could reach >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable to uninfected subjects. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. These analyses identified three "immunotypes" associated with poor clinical trajectories versus improving health. These immunotypes may have implications for therapeutics and vaccines.

5.
Immunity ; 52(5): 825-841.e8, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32396847

RESUMO

CD8+ T cell exhaustion is a major barrier to current anti-cancer immunotherapies. Despite this, the developmental biology of exhausted CD8+ T cells (Tex) remains poorly defined, restraining improvement of strategies aimed at "re-invigorating" Tex cells. Here, we defined a four-cell-stage developmental framework for Tex cells. Two TCF1+ progenitor subsets were identified, one tissue restricted and quiescent and one more blood accessible, that gradually lost TCF1 as it divided and converted to a third intermediate Tex subset. This intermediate subset re-engaged some effector biology and increased upon PD-L1 blockade but ultimately converted into a fourth, terminally exhausted subset. By using transcriptional and epigenetic analyses, we identified the control mechanisms underlying subset transitions and defined a key interplay between TCF1, T-bet, and Tox in the process. These data reveal a four-stage developmental hierarchy for Tex cells and define the molecular, transcriptional, and epigenetic mechanisms that could provide opportunities to improve cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epigênese Genética/imunologia , Neoplasias/imunologia , Subpopulações de Linfócitos T/imunologia , Transcrição Genética/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Epigênese Genética/genética , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/imunologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/imunologia , Humanos , Imunoterapia/métodos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/terapia , Proteínas com Domínio T/genética , Proteínas com Domínio T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Genética/genética
6.
Immunity ; 51(5): 840-855.e5, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31606264

RESUMO

TCF-1 is a key transcription factor in progenitor exhausted CD8 T cells (Tex). Moreover, this Tex cell subset mediates responses to PD-1 checkpoint pathway blockade. However, the role of the transcription factor TCF-1 in early fate decisions and initial generation of Tex cells is unclear. Single-cell RNA sequencing (scRNA-seq) and lineage tracing identified a TCF-1+Ly108+PD-1+ CD8 T cell population that seeds development of mature Tex cells early during chronic infection. TCF-1 mediated the bifurcation between divergent fates, repressing development of terminal KLRG1Hi effectors while fostering KLRG1Lo Tex precursor cells, and PD-1 stabilized this TCF-1+ Tex precursor cell pool. TCF-1 mediated a T-bet-to-Eomes transcription factor transition in Tex precursors by promoting Eomes expression and drove c-Myb expression that controlled Bcl-2 and survival. These data define a role for TCF-1 in early-fate-bifurcation-driving Tex precursor cells and also identify PD-1 as a protector of this early TCF-1 subset.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Redes Reguladoras de Genes , Fator 1 de Transcrição de Linfócitos T/metabolismo , Transcrição Genética , Animais , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Doença Crônica , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Camundongos , Receptor de Morte Celular Programada 1/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Viroses/genética , Viroses/imunologia , Viroses/virologia
7.
J Clin Invest ; 129(8): 3185-3200, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264971

RESUMO

T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.


Assuntos
Linfonodos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Ducto Torácico/imunologia , Animais , Feminino , Humanos , Linfonodos/citologia , Macaca mulatta , Masculino , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Ducto Torácico/citologia
8.
Nature ; 571(7764): 211-218, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31207603

RESUMO

Exhausted CD8+ T (Tex) cells in chronic infections and cancer have limited effector function, high co-expression of inhibitory receptors and extensive transcriptional changes compared with effector (Teff) or memory (Tmem) CD8+ T cells. Tex cells are important clinical targets of checkpoint blockade and other immunotherapies. Epigenetically, Tex cells are a distinct immune subset, with a unique chromatin landscape compared with Teff and Tmem cells. However, the mechanisms that govern the transcriptional and epigenetic development of Tex cells remain unknown. Here we identify the HMG-box transcription factor TOX as a central regulator of Tex cells in mice. TOX is largely dispensable for the formation of Teff and Tmem cells, but it is critical for exhaustion: in the absence of TOX, Tex cells do not form. TOX is induced by calcineurin and NFAT2, and operates in a feed-forward loop in which it becomes calcineurin-independent and sustained in Tex cells. Robust expression of TOX therefore results in commitment to Tex cells by translating persistent stimulation into a distinct Tex cell transcriptional and epigenetic developmental program.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Epistasia Genética , Proteínas de Homeodomínio/metabolismo , Transcrição Genética , Animais , Calcineurina/metabolismo , Sinalização do Cálcio , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica/imunologia , Genótipo , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Evasão Tumoral
9.
Nature ; 545(7652): 60-65, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28397821

RESUMO

Despite the success of monotherapies based on blockade of programmed cell death 1 (PD-1) in human melanoma, most patients do not experience durable clinical benefit. Pre-existing T-cell infiltration and/or the presence of PD-L1 in tumours may be used as indicators of clinical response; however, blood-based profiling to understand the mechanisms of PD-1 blockade has not been widely explored. Here we use immune profiling of peripheral blood from patients with stage IV melanoma before and after treatment with the PD-1-targeting antibody pembrolizumab and identify pharmacodynamic changes in circulating exhausted-phenotype CD8 T cells (Tex cells). Most of the patients demonstrated an immunological response to pembrolizumab. Clinical failure in many patients was not solely due to an inability to induce immune reinvigoration, but rather resulted from an imbalance between T-cell reinvigoration and tumour burden. The magnitude of reinvigoration of circulating Tex cells determined in relation to pretreatment tumour burden correlated with clinical response. By focused profiling of a mechanistically relevant circulating T-cell subpopulation calibrated to pretreatment disease burden, we identify a clinically accessible potential on-treatment predictor of response to PD-1 blockade.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Carga Tumoral/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Antígeno Ki-67/imunologia , Antígeno Ki-67/metabolismo , Masculino , Melanoma/irrigação sanguínea , Melanoma/patologia , Estadiamento de Neoplasias , Fenótipo , Resultado do Tratamento
10.
JCI Insight ; 2(4): e90870, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239656

RESUMO

T cells play a significant role in the pathogenesis of systemic autoimmune diseases, including systemic lupus erythematosus; however, there is relatively little information on the nature and specificity of autoreactive T cells. Identifying such cells has been technically difficult because they are likely to be rare and low affinity. Here, we report a method for identifying autoreactive T cell clones that recognize proteins contained in autoantibody immune complexes, providing direct evidence that functional autoreactive helper T cells exist in the periphery of normal mice. These T cells significantly enhanced autoreactive B cell proliferation and altered B cell differentiation in vivo. Most importantly, these autoreactive T cells were able to rescue many aspects of the TLR-deficient AM14 (anti-IgG2a rheumatoid factor) B cell response, suggesting that TLR requirements can be bypassed. This result has implications for the efficacy of TLR-targeted therapy in the treatment of ongoing disease.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Receptores Toll-Like/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Autoanticorpos/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/imunologia
11.
J Immunol ; 195(6): 2571-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26268653

RESUMO

B cells have both Ab-dependent and Ab-independent functions in systemic autoimmune diseases, including systemic lupus erythematosus (SLE). Ab-independent functions are known to be important, because mice with B cells but no secreted Ig have severe disease. These functions could include roles in lymphoid development, cytokine secretion, and Ag presentation; however, these possibilities have not been directly tested in SLE models. In this study, we show by lineage-specific ablation of MHC class II (MHCII) that B cell Ag presentation plays a nonredundant role in CD4(+) T cell activation and effector differentiation in the MRL.Fas(lpr) mouse model of SLE. MHCII-mediated interactions between B and T cells further promote B cell proliferation and differentiation, and, in fact, inefficient MHCII deletion on B cells led to strong selection of escaped cells in activated and plasmablast compartments, further underscoring the central role of B cell Ag presentation. Despite the leakiness in the system, B cell-specific MHCII deletion resulted in substantially ameliorated clinical disease. Hence, B cell Ag presentation is critical for T and B cell activation and differentiation, as well as target organ damage.


Assuntos
Apresentação do Antígeno/imunologia , Linfócitos B/imunologia , Genes MHC da Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Lúpus Eritematoso Sistêmico/imunologia , Animais , Autoanticorpos/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células/genética , Citocinas/metabolismo , Genes MHC da Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Nefrite Lúpica/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA