Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 700, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951540

RESUMO

Oxidation of bromide in aqueous environments initiates the formation of molecular halogen compounds, which is important for the global tropospheric ozone budget. In the aqueous bulk, oxidation of bromide by ozone involves a [Br•OOO-] complex as intermediate. Here we report liquid jet X-ray photoelectron spectroscopy measurements that provide direct experimental evidence for the ozonide and establish its propensity for the solution-vapour interface. Theoretical calculations support these findings, showing that water stabilizes the ozonide and lowers the energy of the transition state at neutral pH. Kinetic experiments confirm the dominance of the heterogeneous oxidation route established by this precursor at low, atmospherically relevant ozone concentrations. Taken together, our results provide a strong case of different reaction kinetics and mechanisms of reactions occurring at the aqueous phase-vapour interface compared with the bulk aqueous phase.Heterogeneous oxidation of bromide in atmospheric aqueous environments has long been suspected to be accelerated at the interface between aqueous solution and air. Here, the authors provide spectroscopic, kinetic and theoretical evidence for a rate limiting, surface active ozonide formed at the interface.

2.
Phys Chem Chem Phys ; 17(46): 31101-9, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26536455

RESUMO

Ageing of particulate organic matter affects the composition and properties of atmospheric aerosol particles. Driven by temperature and humidity, the organic fraction can vary its physical state between liquid and amorphous solid, or rarely even crystalline. These transitions can influence the reaction kinetics due to limitations of mass transport in such (semi-) solid states, which in turn may influence the chemical ageing of particles containing such compounds. We have used coated wall flow tube experiments to investigate the reaction kinetics of the ozonolysis of shikimic acid, which serves as a proxy for oxygenated, water-soluble organic matter and can form a glass at room temperature. Particular attention was paid to how the presence of water influences the reaction, since it acts a plasticiser and thereby induces changes in the physical state. We analysed the results by means of a traditional resistor model, which assumes steady-state conditions. The ozonolysis rate of shikimic acid is strongly increased in the presence of water, a fact we attribute to the increased transport of O3 and shikimic acid through the condensed phase at lower viscosities. The analysis using the resistor model suggests that the system undergoes both surface and bulk reaction. The second-order rate coefficient of the bulk reaction is 3.7 (+1.5/-3.2) × 10(3) L mol(-1) s(-1). At low humidity and long timescales, the resistor model fails to describe the measurements appropriately. The persistent O3 uptake at very low humidity suggests contribution of a self-reaction of O3 on the surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA