Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31665449

RESUMO

CONTEXT: Urine steroid metabolomics, combining mass spectrometry-based steroid profiling and machine learning, has been described as a novel diagnostic tool for detection of adrenocortical carcinoma (ACC). OBJECTIVE, DESIGN, SETTING: This proof-of-concept study evaluated the performance of urine steroid metabolomics as a tool for post-operative recurrence detection after microscopically complete (R0) resection of ACC. PATIENTS AND METHODS: 135 patients from 14 clinical centers provided post-operative urine samples, which were analyzed by gas chromatography-mass spectrometry. We assessed the utility of these urine steroid profiles in detecting ACC recurrence, either when interpreted by expert clinicians, or when analyzed by Random Forest, a machine learning-based classifier. Radiological recurrence detection served as the reference standard. RESULTS: Imaging detected recurrent disease in 42 of 135 patients; 32 had provided pre- and post-recurrence urine samples. 39 patients remained disease-free for ≥3 years. The urine "steroid fingerprint" at recurrence resembled that observed before R0 resection in the majority of cases. Review of longitudinally collected urine steroid profiles by three blinded experts detected recurrence by the time of radiological diagnosis in 50-72% of cases, improving to 69-92%, if a pre-operative urine steroid result was available. Recurrence detection by steroid profiling preceded detection by imaging by more than 2 months in 22-39% of patients. Specificities varied considerably, ranging from 61 to 97%. The computational classifier detected ACC recurrence with superior accuracy (sensitivity=specificity=81%). CONCLUSION: Urine steroid metabolomics is a promising tool for post-operative recurrence detection in ACC; availability of a pre-operative urine considerably improves the ability to detect ACC recurrence.

2.
Endocr Rev ; 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31294783

RESUMO

Steroid biosynthesis and metabolism is reflected by the serum steroid metabolome and, in even more detail, by the 24-hour urine steroid metabolome, which can provide unique insights into alterations of steroid flow and output indicative of underlying conditions. Mass spectrometry-based steroid metabolome profiling has allowed for the identification of unique multi-steroid signatures associated with disorders of steroid biosynthesis and metabolism that can be used for personalized approaches to diagnosis, differential diagnosis and prognostic prediction. In addition, steroid metabolome analysis has been used successfully as a discovery tool, for the identification of novel steroidogenic disorders and pathways as well as revealing insights into the pathophysiology of adrenal disease. Increased availability and technological advances in mass spectrometry-based methodologies have refocused attention on steroid metabolome profiling and facilitated the development of high-throughput steroid profiling methods soon to reach clinical practice. Furthermore, steroid metabolomics, the combination of mass spectrometry-based steroid analysis with machine learning-based approaches, has facilitated the development of powerful customized diagnostic approaches. In this review, we provide a comprehensive up-to-date overview of the utility of steroid metabolome analysis for the diagnosis and management of inborn disorders of steroidogenesis and autonomous adrenal steroid excess in the context of adrenal tumors.

3.
J Steroid Biochem Mol Biol ; 194: 105439, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31362062

RESUMO

Advances in technology have allowed for the sensitive, specific, and simultaneous quantitative profiling of steroid precursors, bioactive steroids and inactive metabolites, facilitating comprehensive characterization of the serum and urine steroid metabolomes. The quantification of steroid panels is therefore gaining favor over quantification of single marker metabolites in the clinical and research laboratories. However, although the biochemical pathways for the biosynthesis and metabolism of steroid hormones are now well defined, a gulf still exists between this knowledge and its application to the measured steroid profiles. In this review, we present an overview of steroid hormone biosynthesis and metabolism by the liver and peripheral tissues, specifically highlighting the pathways linking and differentiating the serum and urine steroid metabolomes. A brief overview of the methodology used in steroid profiling is also provided.

4.
J Steroid Biochem Mol Biol ; 189: 218-227, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30769091

RESUMO

Steroid hormones, including glucocorticoids and androgens, have potent actions to regulate many cellular processes within the liver. The steroid A-ring reductase, 5ß-reductase (AKR1D1), is predominantly expressed in the liver, where it inactivates steroid hormones and, in addition, plays a crucial role in bile acid synthesis. However, the precise functional role of AKR1D1 to regulate steroid hormone action in vitro has not been demonstrated. We have therefore hypothesised that genetic manipulation of AKR1D1 has the potential to regulate glucocorticoid availability and action in human hepatocytes. In both liver (HepG2) and non-liver cell (HEK293) lines, AKR1D1 over-expression increased glucocorticoid clearance with a concomitant decrease in the activation of the glucocorticoid receptor and the down-stream expression of glucocorticoid target genes. Conversely, knockdown of AKR1D1 using siRNA decreased glucocorticoid clearance and reduced the generation of 5ß-reduced metabolites. In addition, the two 5α-reductase inhibitors finasteride and dutasteride failed to effectively inhibit AKR1D1 activity in either cell-free or hepatocellular systems. Through manipulation of AKR1D1 expression and activity, we have demonstrated its potent ability to regulate glucocorticoid availability and receptor activation within human hepatoma cells. These data suggest that AKR1D1 may have an important role in regulating endogenous (and potentially exogenous) glucocorticoid action that may be of particular relevance to physiological and pathophysiological processes affecting the liver.

5.
JCI Insight ; 4(6)2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30753168

RESUMO

Idiopathic intracranial hypertension (IIH) is a condition of unknown etiology, characterized by elevated intracranial pressure frequently manifesting with chronic headaches and visual loss. Similar to polycystic ovary syndrome (PCOS), IIH predominantly affects obese women of reproductive age. In this study, we comprehensively examined the systemic and cerebrospinal fluid (CSF) androgen metabolome in women with IIH in comparison with sex-, BMI-, and age-matched control groups with either simple obesity or PCOS (i.e., obesity and androgen excess). Women with IIH showed a pattern of androgen excess distinct to that observed in PCOS and simple obesity, with increased serum testosterone and increased CSF testosterone and androstenedione. Human choroid plexus expressed the androgen receptor, alongside the androgen-activating enzyme aldoketoreductase type 1C3. We show that in a rat choroid plexus cell line, testosterone significantly enhanced the activity of Na+/K+-ATPase, a surrogate of CSF secretion. We demonstrate that IIH patients have a unique signature of androgen excess and provide evidence that androgens can modulate CSF secretion via the choroid plexus. These findings implicate androgen excess as a potential causal driver and therapeutic target in IIH.

6.
J Clin Endocrinol Metab ; 102(12): 4435-4447, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28945888

RESUMO

Context: Estrogens affect the incidence and progression of colorectal cancer (CRC), although the precise molecular mechanisms remain ill-defined. Objective: The present study investigated prereceptor estrogen metabolism through steroid sulphatase (STS) and 17ß-hydroxysteroid dehydrogenase activity and subsequent nongenomic estrogen signaling in human CRC tissue, in The Cancer Genome Atlas colon adenocarcinoma data set, and in in vitro and in vivo CRC models. We aimed to define and therapeutically target pathways through which estrogens alter CRC proliferation and progression. Design, Setting, Patients, and Interventions: Human CRC samples with normal tissue-matched controls were collected from postmenopausal female and age-matched male patients. Estrogen metabolism enzymes and nongenomic downstream signaling pathways were determined. CRC cell lines were transfected with STS and cultured for in vitro and in vivo analysis. Estrogen metabolism was determined using an ultra-performance liquid chromatography-tandem mass spectrometry method. Primary Outcome Measure: The proliferative effects of estrogen metabolism were evaluated using 5-bromo-2'-deoxyuridine assays and CRC mouse xenograft studies. Results: Human CRC exhibits dysregulated estrogen metabolism, favoring estradiol synthesis. The activity of STS, the fundamental enzyme that activates conjugated estrogens, is significantly (P < 0.001) elevated in human CRC compared with matched controls. STS overexpression accelerates CRC proliferation in in vitro and in vivo models, with STS inhibition an effective treatment. We defined a G-protein-coupled estrogen receptor (GPER) proproliferative pathway potentially through increased expression of connective tissue growth factor in CRC. Conclusion: Human CRC favors estradiol synthesis to augment proliferation via GPER stimulation. Further research is required regarding whether estrogen replacement therapy should be used with caution in patients at high risk of developing CRC.


Assuntos
Neoplasias Colorretais/patologia , Estrogênios/metabolismo , Receptores Estrogênicos/metabolismo , Receptores Acoplados a Proteínas-G/metabolismo , Esteril-Sulfatase/farmacologia , Ativação Metabólica/efeitos dos fármacos , Animais , Antimetabólitos/farmacologia , Bromodesoxiuridina/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
7.
JCI Insight ; 2(8)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28422753

RESUMO

BACKGROUND: Adrenal aldosterone excess is the most common cause of secondary hypertension and is associated with increased cardiovascular morbidity. However, adverse metabolic risk in primary aldosteronism extends beyond hypertension, with increased rates of insulin resistance, type 2 diabetes, and osteoporosis, which cannot be easily explained by aldosterone excess. METHODS: We performed mass spectrometry-based analysis of a 24-hour urine steroid metabolome in 174 newly diagnosed patients with primary aldosteronism (103 unilateral adenomas, 71 bilateral adrenal hyperplasias) in comparison to 162 healthy controls, 56 patients with endocrine inactive adrenal adenoma, 104 patients with mild subclinical, and 47 with clinically overt adrenal cortisol excess. We also analyzed the expression of cortisol-producing CYP11B1 and aldosterone-producing CYP11B2 enzymes in adenoma tissue from 57 patients with aldosterone-producing adenoma, employing immunohistochemistry with digital image analysis. RESULTS: Primary aldosteronism patients had significantly increased cortisol and total glucocorticoid metabolite excretion (all P < 0.001), only exceeded by glucocorticoid output in patients with clinically overt adrenal Cushing syndrome. Several surrogate parameters of metabolic risk correlated significantly with glucocorticoid but not mineralocorticoid output. Intratumoral CYP11B1 expression was significantly associated with the corresponding in vivo glucocorticoid excretion. Unilateral adrenalectomy resolved both mineralocorticoid and glucocorticoid excess. Postoperative evidence of adrenal insufficiency was found in 13 (29%) of 45 consecutively tested patients. CONCLUSION: Our data indicate that glucocorticoid cosecretion is frequently found in primary aldosteronism and contributes to associated metabolic risk. Mineralocorticoid receptor antagonist therapy alone may not be sufficient to counteract adverse metabolic risk in medically treated patients with primary aldosteronism. FUNDING: Medical Research Council UK, Wellcome Trust, European Commission.

8.
Front Pharmacol ; 8: 103, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326039

RESUMO

Hormone replacement therapy (HRT) affects the incidence and potential progression of colorectal cancer (CRC). As HRT primarily consists of estrone sulfate (E1S), understanding whether this conjugated estrogen is transported and metabolized in CRC will define its potential effect in this malignancy. Here, we show that a panel of CRC cell lines (Colo205, Caco2, HCT116, HT-29) have steroid sulfatase (STS) activity, and thus can hydrolyze E1S. STS activity is significantly higher in CRC cell lysate, suggesting the importance of E1S transport in intracellular STS substrate availability. As E1S transport is regulated by the expression pattern of certain solute carrier organic anion transporter polypeptides, we show that in CRC OATP4A1 is the most abundantly expressed transporter. All four CRC cell lines rapidly transported E1S into cells, with this effect significantly inhibited by the competitive OATP inhibitor BSP. Transient knockdown of OATP4A1 significantly disrupted E1S uptake. Examination of estrogen receptor status showed ERα was present in Colo205 and Caco2 cells. None of the cells expressed ERß. Intriguingly, HCT116 and HT29 cells strongly expressed the G protein coupled estrogen receptor (GPER), and that stimulation of this receptor with estradiol (E2) and G1, a GPER agonist, significantly (p < 0.01) increased STS activity. Furthermore, tamoxifen and fulvestrant, known GPER agonist, also increased CRC STS activity, with this effect inhibited by the GPER antagonist G15. These results suggest that CRC can take up and hydrolyze E1S, and that subsequent GPER stimulation increases STS activity in a potentially novel positive feedback loop. As elevated STS expression is associated with poor prognosis in CRC, these results suggest HRT, tamoxifen and fulvestrant may negatively impact CRC patient outcomes.

9.
Endocr Rev ; 36(5): 526-63, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213785

RESUMO

Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.


Assuntos
Esteroides/metabolismo , Esteril-Sulfatase/metabolismo , Sulfotransferases/metabolismo , Animais , Transporte Biológico Ativo , Humanos , Terapia de Alvo Molecular , Complexos Multienzimáticos/metabolismo , Mutação , Neoplasias/metabolismo , Sulfato Adenililtransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA