Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Anal Chem ; 93(7): 3436-3444, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33571411

RESUMO

We introduce a technique for the directed transfer of molecules from an adjacent reservoir onto a sample surface inside the vacuum chamber of a ToF-SIMS instrument using gas cluster ion beam (GCIB) sputtering. An example application for in situ matrix-enhanced secondary ion mass spectrometry (ME SIMS) is provided. This protocol has attractive features since most modern SIMS instruments are equipped with a GCIB gun. No solvents are required that would delocalize analytes at the surface, and the transfer of matrix molecules can be interlaced with SIMS depth profiling and 3D imaging sputtering and analysis cycles, which is not possible with conventional ME SIMS strategies. The amount of molecular deposition can be finely tuned, which is important for such a surface sensitive technique as SIMS. To demonstrate the concept, we used 2,5-DHB as a matrix for the enhancement of three drug molecules embedded in a tissue homogenate. By automatic operation of sputter deposition and erosion (cleanup) cycles, depth profiling could be achieved with ME SIMS with good repeatability (<4% RSD). Furthermore, we explored several different matrix compounds, including α-CHCA and aqueous solutions of Brønsted acids (formic acid) and 3-nitrobenzonitrile, a volatile compound known to spontaneously produce ions. The latter two matrix compounds were applied at cryogenic measurement conditions, which extend the range of matrices applicable for ME SIMS. Enhancement ratios range from 2 to 13, depending on the analytes and matrix. The method works in principle, but enhancement ratios for the drug molecules are rather limited at this point. Further study and optimization is needed, and the technique introduced here provides a tool to perform systematic studies of matrix compounds and experimental conditions for their potential for signal enhancement in ME SIMS.

2.
J Phys Chem Lett ; 11(20): 8616-8622, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960067

RESUMO

Femtosecond laser desorption postionization mass spectrometry using 7.9 eV single-photon ionization (7.9 eV fs-LDPI-MS) detected three of four drug compounds previously found to have very low ionization efficiencies by secondary ion mass spectrometry. Electronic structure calculations of the ionization energies and other properties of these four drug compounds predicted that all display ionization energies below the 7.9 eV photon energy, as required for single-photon ionization. The 7.9 eV fs-LDPI-MS of carbamazepine, imipramine, and verapamil all showed significant precursor (M+) ion signal, but no representative signal was observed for ciprofloxacin. Furthermore, 7.9 eV fs-LDPI-MS displayed higher M+ signals and mostly similar fragment ions compared with 70 eV electron impact mass spectrometry. Ionization and fragmentation patterns are discussed in terms of calculated wave functions for the highest occupied molecular orbitals. The implications for improving lateral resolution and sensitivity of MS imaging of drug compounds are also considered.

3.
Anal Chem ; 92(16): 10979-10988, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32627536

RESUMO

Chemical imaging techniques are increasingly being used in combination to achieve a greater understanding of a sample. This is especially true in the case of mass spectrometry imaging (MSI), where the use of different ionization sources allows detection of different classes of molecules across a range of spatial resolutions. There has been significant recent effort in the development of data fusion algorithms that attempt to combine the benefits of multiple techniques, such that the output provides additional information that would have not been present or obvious from the individual techniques alone. However, the majority of the data fusion methods currently in use rely on image registration to generate the fused data and therefore can suffer from artifacts caused by interpolation. Here, we present a method for data fusion that does not incorporate interpolation-based artifacts into the final fused data, applied to data acquired from multiple chemical imaging modalities. The method is evaluated using simulated data and a model polymer blend sample, before being applied to biological samples of mouse brain and lung.

4.
Angew Chem Int Ed Engl ; 59(41): 18194-18200, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32603009

RESUMO

OrbiSIMS is a recently developed instrument for label-free imaging of chemicals with micron spatial resolution and high mass resolution. We report a cryogenic workflow for OrbiSIMS (Cryo-OrbiSIMS) that improves chemical detection of lipids and other biomolecules in tissues. Cryo-OrbiSIMS boosts ionization yield and decreases ion-beam induced fragmentation, greatly improving the detection of biomolecules such as triacylglycerides. It also increases chemical coverage to include molecules with intermediate or high vapor pressures, such as free fatty acids and semi-volatile organic compounds (SVOCs). We find that Cryo-OrbiSIMS reveals the hitherto unknown localization patterns of SVOCs with high spatial and chemical resolution in diverse plant, animal, and human tissues. We also show that Cryo-OrbiSIMS can be combined with genetic analysis to identify enzymes regulating SVOC metabolism. Cryo-OrbiSIMS is applicable to high resolution imaging of a wide variety of non-volatile and semi-volatile molecules across many areas of biomedicine.

6.
Anal Chem ; 92(13): 9008-9015, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460495

RESUMO

Secondary ion mass spectrometry (SIMS) is gaining popularity for molecular imaging in the life sciences because it is label-free and allows imaging in two and three dimensions. The recent introduction of the OrbiSIMS has significantly improved the utility for biological imaging through combining subcellular spatial resolution with high-performance Orbitrap mass spectrometry. SIMS instruments operate in high-vacuum, and samples are typically analyzed in a freeze-dried state. Consequently, the molecular and structural information may not be well-preserved. We report a method for molecular imaging of biological materials, preserved in a native state, by using an OrbiSIMS instrument equipped with cryogenic sample handling and a high-pressure freezing protocol compatible with mass spectrometry. The performance is demonstrated by imaging a challenging sample (>90% water) of a mature Pseudomonas aeruginosa biofilm in its native state. The 3D distribution of quorum sensing signaling molecules, nucleobases, and bacterial membrane molecules is revealed with high spatial-resolution and high mass-resolution. We discover that analysis in the frozen-hydrated state yields a 10 000-fold increase in signal intensity for polar molecules such as amino acids, which has important implications for SIMS imaging of metabolites and pharmaceuticals.

8.
Gut ; 69(4): 764-780, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31879281

RESUMO

Alcohol-related liver disease (ALD), which includes a range of disorders of different severity and is one of the most prevalent types of liver disease worldwide, has recently regained increased attention. Among other reasons, the realisation that any alcohol intake, regardless of type of beverage represents a health risk, and the new therapeutic strategies tested in recently published or undergoing clinical trials spur scientific interest in this area.In April 2019, Gut convened a round table panel of experts during the European Association for the Study of the Liver International Liver Congress in Vienna to discuss critical and up-to-date issues and clinical trial data regarding ALD, its epidemiology, diagnosis, management, pathomechanisms, possible future treatments and prevention. This paper summarises the discussion and its conclusions.


Assuntos
Hepatopatias Alcoólicas/diagnóstico , Hepatopatias Alcoólicas/epidemiologia , Humanos , Hepatopatias Alcoólicas/terapia
9.
Lancet ; 395(10219): 226-239, 2020 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31791690

RESUMO

This final report of the Lancet Commission into liver disease in the UK stresses the continuing increase in burden of liver disease from excess alcohol consumption and obesity, with high levels of hospital admissions which are worsening in deprived areas. Only with comprehensive food and alcohol strategies based on fiscal and regulatory measures (including a minimum unit price for alcohol, the alcohol duty escalator, and an extension of the sugar levy on food content) can the disease burden be curtailed. Following introduction of minimum unit pricing in Scotland, alcohol sales fell by 3%, with the greatest effect on heavy drinkers of low-cost alcohol products. We also discuss the major contribution of obesity and alcohol to the ten most common cancers as well as measures outlined by the departing Chief Medical Officer to combat rising levels of obesity-the highest of any country in the west. Mortality of severely ill patients with liver disease in district general hospitals is unacceptably high, indicating the need to develop a masterplan for improving hospital care. We propose a plan based around specialist hospital centres that are linked to district general hospitals by operational delivery networks. This plan has received strong backing from the British Association for Study of the Liver and British Society of Gastroenterology, but is held up at NHS England. The value of so-called day-case care bundles to reduce high hospital readmission rates with greater care in the community is described, along with examples of locally derived schemes for the early detection of disease and, in particular, schemes to allow general practitioners to refer patients directly for elastography assessment. New funding arrangements for general practitioners will be required if these proposals are to be taken up more widely around the country. Understanding of the harm to health from lifestyle causes among the general population is low, with a poor knowledge of alcohol consumption and dietary guidelines. The Lancet Commission has serious doubts about whether the initiatives described in the Prevention Green Paper, with the onus placed on the individual based on the use of information technology and the latest in behavioural science, will be effective. We call for greater coordination between official and non-official bodies that have highlighted the unacceptable disease burden from liver disease in England in order to present a single, strong voice to the higher echelons of government.


Assuntos
Alcoolismo/epidemiologia , Hepatopatias/epidemiologia , Hepatopatias/prevenção & controle , Obesidade/epidemiologia , Bebidas Alcoólicas/economia , Alcoolismo/complicações , Alcoolismo/terapia , Comércio , Redes Comunitárias/organização & administração , Comorbidade , Efeitos Psicossociais da Doença , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Legislação sobre Alimentos , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Transplante de Fígado/estatística & dados numéricos , Obesidade/complicações , Pacotes de Assistência ao Paciente , Escócia , Reino Unido/epidemiologia
10.
Anal Chem ; 91(22): 14545-14551, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31621296

RESUMO

The protist (mostly single-celled organisms), Paramecium bursaria, forms an intracellular symbiotic relationship with the single-celled algae, Chlorella variabilis, where P. bursaria provides nutrients (i.e., Ca2+, Mg2+, and K+), carbon dioxide for photosynthesis and protection from viruses, while C. variabilis provides oxygen, carbon fixation, and nutrients. Key to this successful relationship is the perialgal vacuole (PV) membrane, which surrounds C. variabilis and protects it from digestion by P. bursaria. The membrane is fragile and difficult to analyze using conventional methods therefore very little is known about the molecular composition. We used the OrbiSIMS, a new high-resolution mass spectrometer with subcellular resolution imaging, to study the compartmentalization of endosymbionts and elucidate biomolecular interactions between the host and endosymbiont. Ions from the region of interest, close to C. variabilis, and specific to the target samples containing PVs were found based on the chemical mapping and masses of the ions. We show chemical localizations of oligosaccharides in close proximity of C. variabilis endosymbionts in P. bursaria. These oligosaccharides are detected in host-endosymbiont samples containing PV membrane-bound algae and absent in free-living algae and digestive vacuole (DV) membrane-bound algae in P. bursaria.


Assuntos
Chlorella/química , Membranas Intracelulares/química , Paramecium/química , Vacúolos/química , Espectrometria de Massas , Oligossacarídeos/análise , Simbiose/fisiologia
12.
Trials ; 20(1): 467, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31362765

RESUMO

BACKGROUND: Acute gastrointestinal (GI) bleeding is an important cause of mortality worldwide. Bleeding can occur from the upper or lower GI tract, with upper GI bleeding accounting for most cases. The main causes include peptic ulcer/erosive mucosal disease, oesophageal varices and malignancy. The case fatality rate is around 10% for upper GI bleeding and 3% for lower GI bleeding. Rebleeding affects 5-40% of patients and is associated with a four-fold increased risk of death. Tranexamic acid (TXA) decreases bleeding and the need for blood transfusion in surgery and reduces death due to bleeding in patients with trauma and postpartum haemorrhage. It reduces bleeding by inhibiting the breakdown of fibrin clots by plasmin. Due to the methodological weaknesses and small size of the existing trials, the effectiveness and safety of TXA in GI bleeding is uncertain. The Haemorrhage ALleviation with Tranexamic acid - Intestinal system (HALT-IT) trial aims to provide reliable evidence about the effects of TXA in acute upper and lower GI bleeding. METHODS: The HALT-IT trial is an international, randomised, double-blind, placebo-controlled trial of tranexamic acid in 12,000 adults (increased from 8000) with acute upper or lower GI bleeding. Eligible patients are randomly allocated to receive TXA (1-g loading dose followed by 3-g maintenance dose over 24 h) or matching placebo. The main analysis will compare those randomised to TXA with those randomised to placebo on an intention-to-treat basis, presenting the results as effect estimates (relative risks) and confidence intervals. The primary outcome is death due to bleeding within 5 days of randomisation and secondary outcomes are: rebleeding; all-cause and cause-specific mortality; thromboembolic events; complications; endoscopic, radiological and surgical interventions; blood transfusion requirements; disability (defined by a measure of patient's self-care capacity); and number of days spent in intensive care or high-dependency units. Subgroup analyses for the primary outcome will consider time to treatment, location of bleeding, cause of bleed and clinical Rockall score. DISCUSSION: We present the statistical analysis of the HALT-IT trial. This plan was published before the treatment allocation was unblinded. TRIAL REGISTRATION: Current Controlled Trials, ID: ISRCTN11225767. Registered on 3 July 2012; Clinicaltrials.gov, ID: NCT01658124. Registered on 26 July 2012.


Assuntos
Antifibrinolíticos/uso terapêutico , Hemorragia Gastrointestinal/tratamento farmacológico , Ácido Tranexâmico/uso terapêutico , Antifibrinolíticos/efeitos adversos , Interpretação Estatística de Dados , Método Duplo-Cego , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/mortalidade , Humanos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Ácido Tranexâmico/efeitos adversos , Resultado do Tratamento
14.
Lancet ; 393(10189): 2377-2378, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31200990
16.
Annu Rev Anal Chem (Palo Alto Calif) ; 12(1): 201-224, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30848927

RESUMO

There is an increasing appreciation that every cell, even of the same type, is different. This complexity, when additionally combined with the variety of different cell types in tissue, is driving the need for spatially resolved omics at the single-cell scale. Rapid advances are being made in genomics and transcriptomics, but progress in metabolomics lags. This is partly because amplification and tagging strategies are not suited to dynamically created metabolite molecules. Mass spectrometry imaging has excellent potential for metabolic imaging. This review summarizes the recent advances in two of these techniques: matrix-assisted laser desorption ionization (MALDI) and secondary ion mass spectrometry (SIMS) and their convergence in subcellular spatial resolution and molecular information. The barriers that have held back progress such as lack of sensitivity and the breakthroughs that have been made including laser-postionization are highlighted as well as the future challenges and opportunities for metabolic imaging at the single-cell scale.


Assuntos
Metabolômica/métodos , Análise de Célula Única/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massa de Íon Secundário/métodos , Animais , Humanos , Metaboloma , Metabolômica/instrumentação , Análise de Célula Única/instrumentação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação , Espectrometria de Massa de Íon Secundário/instrumentação
20.
ACS Appl Mater Interfaces ; 11(4): 4500-4506, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30604956

RESUMO

Organic-inorganic hybrid materials enable the design and fabrication of new materials with enhanced properties. The interface between the organic and inorganic materials is often critical to the device's performance; therefore, chemical characterization is of significant interest. Because the interfaces are often buried, milling by focused ion beams (FIBs) to expose the interface is becoming increasingly popular. Chemical imaging can subsequently be obtained using secondary-ion mass spectrometry (SIMS). However, the FIB milling process damages the organic material. In this study, we make an organic-inorganic test structure to develop a detailed understanding of the processes involved in FIB milling and SIMS imaging. We provide an analysis methodology that involves a "clean-up" process using sputtering with an argon gas cluster ion source to remove the FIB-induced damage. The methodology is evaluated for two additive manufactured devices, an encapsulated strain sensor containing silver tracks embedded in a polymeric material and a copper track on a flexible polymeric substrate created using a novel nanoparticle sintering technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA