Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anaesth Crit Care Pain Med ; 38(5): 477-483, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31319192

RESUMO

BACKGROUND: Although non-invasive ventilation (NIV) is recommended in patients with chest trauma, this procedure may expose to discomfort and even failure due to agitation or excessive pain. We tested the impact of dexmedetomidine on the duration of the first session of NIV. METHODS: This randomised, crossover study enrolled 19 patients with blunt chest trauma who needed NIV. During one cycle comprising two NIV sessions, patients received in a random order an intravenous infusion of dexmedetomidine (0.7mcg/kg/h) and placebo (saline solution) that was initiated 60min prior to NIV. Dexmedetomidine (or placebo) was titrated to maintain a Richmond Agitation Sedation Scale (RASS) score between 0 and -3. A 6-h washout period was observed between NIV sessions. The reproducibility of the drug-related effects was tested during a second cycle of two NIV sessions. RESULTS: During the first cycle, dexmedetomidine prolonged the duration of NIV compared to placebo: 280min (118-450) (median, 25-75th quartiles) versus 120min (68-287) respectively, corresponding to a median increased duration of 96min (12-180) (P=0.03). Dexmedetomidine was associated with a lower score for RASS: -0.8 (-1.0;0.0) versus 0.0 (-0.5;0.0) (P<0.01), and reduced respiratory discomfort according to the 10cm visual similar scale: 0.6cm (0.0-3.0) versus 2.2cm (0.0-5.3) (P=0.05). Pain scores, morphine consumption, and blood gas measurements were comparable between groups. No difference in the duration of non-invasive ventilation was found during the second cycle. CONCLUSIONS: In this pilot trial, dexmedetomidine could facilitate the acceptance of the first session of non-invasive ventilation for patients with chest trauma.

2.
Environ Health Perspect ; 127(4): 47007, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31009264

RESUMO

BACKGROUND: The exposome is defined as the totality of environmental exposures from conception onwards. It calls for providing a holistic view of environmental exposures and their effects on human health by evaluating multiple environmental exposures simultaneously during critical periods of life. OBJECTIVE: We evaluated the association of the urban exposome with birth weight. METHODS: We estimated exposure to the urban exposome, including the built environment, air pollution, road traffic noise, meteorology, natural space, and road traffic (corresponding to 24 environmental indicators and 60 exposures) for nearly 32,000 pregnant women from six European birth cohorts. To evaluate associations with either continuous birth weight or term low birth weight (TLBW) risk, we primarily relied on the Deletion-Substitution-Addition (DSA) algorithm, which is an extension of the stepwise variable selection method. Second, we used an exposure-by-exposure exposome-wide association studies (ExWAS) method accounting for multiple hypotheses testing to report associations not adjusted for coexposures. RESULTS: The most consistent statistically significant associations were observed between increasing green space exposure estimated as Normalized Difference Vegetation Index (NDVI) and increased birth weight and decreased TLBW risk. Furthermore, we observed statistically significant associations among presence of public bus line, land use Shannon's Evenness Index, and traffic density and birth weight in our DSA analysis. CONCLUSION: This investigation is the first large urban exposome study of birth weight that tests many environmental urban exposures. It confirmed previously reported associations for NDVI and generated new hypotheses for a number of built-environment exposures. https://doi.org/10.1289/EHP3971.

3.
Environ Int ; 121(Pt 1): 561-573, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30300814

RESUMO

BACKGROUND: Exposome studies are challenged by exposure misclassification for non-persistent chemicals, whose temporal variability contributes to bias in dose-response functions. OBJECTIVES: We evaluated the variability of urinary concentrations of 24 non-persistent chemicals: 10 phthalate metabolites, 7 phenols, 6 organophosphate (OP) pesticide metabolites, and cotinine, between weeks from different pregnancy trimesters in pregnant women, and between days and between seasons in children. METHODS: 154 pregnant women and 152 children from six European countries were enrolled in 2014-2015. Pregnant women provided three urine samples over a day (morning, midday, and night), for one week in the 2nd and 3rd pregnancy trimesters. Children provided two urines a day (morning and night), over two one-week periods, six months apart. We pooled all samples for a given subject that were collected within a week. In children, we also made four daily pools (combining morning and night voids) during the last four days of the first follow-up week. Pools were analyzed for all 24 metabolites of interest. We calculated intraclass-correlation coefficients (ICC) and estimated the number of pools needed to obtain an ICC above 0.80. RESULTS: All phthalate metabolites and phenols were detected in >90% of pools whereas certain OP pesticide metabolites and cotinine were detected in <43% of pools. We observed fair (ICC = 0.40-0.59) to good (0.60-0.74) between-day reliability of the pools of two samples in children for all chemicals. Reliability was poor (<0.40) to fair between trimesters in pregnant women and between seasons in children. For most chemicals, three daily pools of two urines each (for weekly exposure windows) and four weekly pools of 15-20 urines each would be necessary to obtain an ICC above 0.80. CONCLUSIONS: This quantification of the variability of biomarker measurements of many non-persistent chemicals during several time windows shows that for many of these compounds a few dozen samples are required to accurately assess exposure over periods encompassing several trimesters or months.

4.
BMJ Open ; 8(9): e021311, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30206078

RESUMO

PURPOSE: Essential to exposome research is the collection of data on many environmental exposures from different domains in the same subjects. The aim of the Human Early Life Exposome (HELIX) study was to measure and describe multiple environmental exposures during early life (pregnancy and childhood) in a prospective cohort and associate these exposures with molecular omics signatures and child health outcomes. Here, we describe recruitment, measurements available and baseline data of the HELIX study populations. PARTICIPANTS: The HELIX study represents a collaborative project across six established and ongoing longitudinal population-based birth cohort studies in six European countries (France, Greece, Lithuania, Norway, Spain and the UK). HELIX used a multilevel study design with the entire study population totalling 31 472 mother-child pairs, recruited during pregnancy, in the six existing cohorts (first level); a subcohort of 1301 mother-child pairs where biomarkers, omics signatures and child health outcomes were measured at age 6-11 years (second level) and repeat-sampling panel studies with around 150 children and 150 pregnant women aimed at collecting personal exposure data (third level). FINDINGS TO DATE: Cohort data include urban environment, hazardous substances and lifestyle-related exposures for women during pregnancy and their offspring from birth until 6-11 years. Common, standardised protocols were used to collect biological samples, measure exposure biomarkers and omics signatures and assess child health across the six cohorts. Baseline data of the cohort show substantial variation in health outcomes and determinants between the six countries, for example, in family affluence levels, tobacco smoking, physical activity, dietary habits and prevalence of childhood obesity, asthma, allergies and attention deficit hyperactivity disorder. FUTURE PLANS: HELIX study results will inform on the early life exposome and its association with molecular omics signatures and child health outcomes. Cohort data are accessible for future research involving researchers external to the project.

5.
Environ Health Perspect ; 126(7): 077005, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30024382

RESUMO

BACKGROUND: The urban exposome is the set of environmental factors that are experienced in the outdoor urban environment and that may influence child development. OBJECTIVE: The authors' goal was to describe the urban exposome among European pregnant women and understand its socioeconomic determinants. METHODS: Using geographic information systems, remote sensing and spatio-temporal modeling we estimated exposure during pregnancy to 28 environmental indicators in almost 30,000 women from six population-based birth cohorts, in nine urban areas from across Europe. Exposures included meteorological factors, air pollutants, traffic noise, traffic indicators, natural space, the built environment, public transport, facilities, and walkability. Socioeconomic position (SEP), assessed at both the area and individual level, was related to the exposome through an exposome-wide association study and principal component (PC) analysis. RESULTS: Mean±standard deviation (SD) NO2 levels ranged from 13.6±5.1 µg/m3 (in Heraklion, Crete) to 43.2±11 µg/m3 (in Sabadell, Spain), mean±SD walkability score ranged from 0.22±0.04 (Kaunas, Lithuania) to 0.32±0.07 (Valencia, Spain) and mean±SD Normalized Difference Vegetation Index ranged from 0.21±0.05 in Heraklion to 0.51±0.1 in Oslo, Norway. Four PCs explained more than half of variation in the urban exposome. There was considerable heterogeneity in social patterning of the urban exposome across cities. For example, high-SEP (based on family education) women lived in greener, less noisy, and less polluted areas in Bradford, UK (0.39 higher PC1 score, 95% confidence interval (CI): 0.31, 0.47), but the reverse was observed in Oslo (-0.57 PC1 score, 95% CI: -0.73, -0.41). For most cities, effects were stronger when SEP was assessed at the area level: In Bradford, women living in high SEP areas had a 1.34 higher average PC1 score (95% CI: 1.21, 1.48). CONCLUSIONS: The urban exposome showed considerable variability across Europe. Pregnant women of low SEP were exposed to higher levels of environmental hazards in some cities, but not others, which may contribute to inequities in child health and development. https://doi.org/10.1289/EHP2862.

6.
Epidemiology ; 29(5): 618-626, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29923866

RESUMO

BACKGROUND: Exposure to air pollution during pregnancy may increase attention-deficit/hyperactivity disorder (ADHD) symptoms in children, but findings have been inconsistent. We aimed to study this association in a collaborative study of eight European population-based birth/child cohorts, including 29,127 mother-child pairs. METHODS: Air pollution concentrations (nitrogen dioxide [NO2] and particulate matter [PM]) were estimated at the birth address by land-use regression models based on monitoring campaigns performed between 2008 and 2011. We extrapolated concentrations back in time to exact pregnancy periods. Teachers or parents assessed ADHD symptoms at 3-10 years of age. We classified children as having ADHD symptoms within the borderline/clinical range and within the clinical range using validated cutoffs. We combined all adjusted area-specific effect estimates using random-effects meta-analysis and multiple imputations and applied inverse probability-weighting methods to correct for loss to follow-up. RESULTS: We classified a total of 2,801 children as having ADHD symptoms within the borderline/clinical range, and 1,590 within the clinical range. Exposure to air pollution during pregnancy was not associated with a higher odds of ADHD symptoms within the borderline/clinical range (e.g., adjusted odds ratio [OR] for ADHD symptoms of 0.95, 95% confidence interval [CI] = 0.89, 1.01 per 10 µg/m increase in NO2 and 0.98, 95% CI = 0.80, 1.19 per 5 µg/m increase in PM2.5). We observed similar associations for ADHD within the clinical range. CONCLUSIONS: There was no evidence for an increase in risk of ADHD symptoms with increasing prenatal air pollution levels in children aged 3-10 years. See video abstract at, http://links.lww.com/EDE/B379.

7.
Int J Epidemiol ; 47(4): 1343-1354, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939274

RESUMO

Multicentre studies are common in epidemiological research aiming at identifying disease risk factors. A major advantage of multicentre over single-centre studies is that, by including a larger number of participants, they allow consideration of rare outcomes and exposures. Their multicentric nature introduces some complexities at the step of data analysis, in particular when it comes to controlling for confounding by centre, which is the focus of this tutorial. Commonly, epidemiologists use one of the following options: pooling all centre-specific data and adjusting for centre using fixed effects; adjusting for centre using random effects; or fitting centre-specific models and combining the results in a meta-analysis. Here, we illustrate the similarities of and differences between these three modelling approaches, explain the reasons why they may provide different conclusions and offer advice on which model to choose depending on the characteristics of the study. Two key issues to examine during the analyses are to distinguish within-centre from between-centre associations, and the possible heterogeneity of the effects (of exposure and/or confounders) by centre. A real epidemiological study is used to illustrate a situation in which these various options yield different results. A synthetic dataset and R and Stata codes are provided to reproduce the results.

8.
Environ Int ; 118: 334-347, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29935799

RESUMO

BACKGROUND: Air pollution exposure represents a major health threat to the developing foetus. DNA methylation is one of the most well-known molecular determinants of the epigenetic status of cells. Blood DNA methylation has been proven sensitive to air pollutants, but the molecular impact of air pollution on new-borns has so far received little attention. OBJECTIVES: We investigated whether nitrogen dioxide (NO2), particulate matter (PM10), temperature and humidity during pregnancy are associated with differences in placental DNA methylation levels. METHODS: Whole-genome DNA-methylation was measured using the Illumina's Infinium HumanMethylation450 BeadChip in the placenta of 668 newborns from the EDEN cohort. We designed an original strategy using a priori biological information to focus on candidate genes with a specific expression pattern in placenta (active or silent) combined with an agnostic epigenome-wide association study (EWAS). We used robust linear regression to identify CpGs and differentially methylated regions (DMR) associated with each exposure during short- and long-term time-windows. RESULTS: The candidate genes approach identified nine CpGs mapping to 9 genes associated with prenatal NO2 and PM10 exposure [false discovery rate (FDR) p < 0.05]. Among these, the methylation level of 2 CpGs located in ADORA2B remained significantly associated with NO2 exposure during the 2nd trimester and whole pregnancy in the EWAS (FDR p < 0.05). EWAS further revealed associations between the environmental exposures under study and variations of DNA methylation of 4 other CpGs. We further identified 27 DMRs significantly (FDR p < 0.05) associated with air pollutants exposure and 13 DMRs with meteorological conditions. CONCLUSIONS: The methylation of ADORA2B, a gene whose expression was previously associated with hypoxia and pre-eclampsia, was consistently found here sensitive to atmospheric pollutants. In addition, air pollutants were associated to DMRs pointing towards genes previously implicated in preeclampsia, hypertensive and metabolic disorders. These findings demonstrate that air pollutants exposure at levels commonly experienced in the European population are associated with placental gene methylation and provide some mechanistic insight into some of the reported effects of air pollutants on preeclampsia.

9.
Environ Health Perspect ; 125(9): 097006, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28934727

RESUMO

BACKGROUND: Phenols and phthalates may have immunomodulatory and proinflammatory effects and thereby adversely affect respiratory health. OBJECTIVE: We estimated the associations between gestational exposure to select phthalates and phenols and respiratory health in boys. METHODS: Among 587 pregnant women from the EDEN (Etude des Déterminants pré et post natals du développement et de la santé de l'Enfant) cohort who delivered a boy, 9 phenols and 11 phthalates metabolites were quantified in spot pregnancy urine samples. Respiratory outcomes were followed up by questionnaires until age 5, when forced expiratory volume in 1 s (FEV1) was measured by spirometry. Adjusted associations of urinary metabolites log-transformed concentrations with respiratory outcomes and FEV1 in percent predicted (FEV1%) were estimated by survival and linear regression models, respectively. RESULTS: No phenol or phthalate metabolite exhibited clear deleterious associations simultaneously with several respiratory outcomes. Ethyl-paraben was associated with increased asthma rate [hazard rate (HR)=1.10; 95% confidence interval (CI): 1.00, 1.21] and tended to be negatively associated with FEV1% (beta=-0.59; 95% CI: -1.24, 0.05); bisphenol A tended to be associated with increased rates of asthma diagnosis (HR=1.23; 95% CI: 0.97, 1.55) and bronchiolitis/bronchitis (HR=1.13; 95% CI: 0.99, 1.30). Isolated trends for deleterious associations were also observed between 2,5-dichlorophenol and wheezing, and between monocarboxynonyl phthalate, a metabolite of di-isodecyl phthalate (DIDP), and wheezing. CONCLUSION: Ethyl-paraben, bisphenol A, 2,5-dichlorophenol, and DIDP tended to be associated with altered respiratory health, with ethyl-paraben and bisphenol A exhibiting some consistency across respiratory outcomes. The trends between bisphenol A pregnancy level and increased asthma and bronchiolitis/bronchitis rates in childhood were consistent with a previous cohort study. https://doi.org/10.1289/EHP1015.


Assuntos
Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/metabolismo , Fenóis/metabolismo , Ácidos Ftálicos/metabolismo , Doenças Respiratórias/epidemiologia , Asma/epidemiologia , Pré-Escolar , Feminino , Humanos , Masculino , Exposição Materna/estatística & dados numéricos , Sons Respiratórios
10.
Environ Health ; 16(1): 74, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28709428

RESUMO

BACKGROUND: There is growing interest in examining the simultaneous effects of multiple exposures and, more generally, the effects of mixtures of exposures, as part of the exposome concept (being defined as the totality of human environmental exposures from conception onwards). Uncovering such combined effects is challenging owing to the large number of exposures, several of them being highly correlated. We performed a simulation study in an exposome context to compare the performance of several statistical methods that have been proposed to detect statistical interactions. METHODS: Simulations were based on an exposome including 237 exposures with a realistic correlation structure. We considered several statistical regression-based methods, including two-step Environment-Wide Association Study (EWAS2), the Deletion/Substitution/Addition (DSA) algorithm, the Least Absolute Shrinkage and Selection Operator (LASSO), Group-Lasso INTERaction-NET (GLINTERNET), a three-step method based on regression trees and finally Boosted Regression Trees (BRT). We assessed the performance of each method in terms of model size, predictive ability, sensitivity and false discovery rate. RESULTS: GLINTERNET and DSA had better overall performance than the other methods, with GLINTERNET having better properties in terms of selecting the true predictors (sensitivity) and of predictive ability, while DSA had a lower number of false positives. In terms of ability to capture interaction terms, GLINTERNET and DSA had again the best performances, with the same trade-off between sensitivity and false discovery proportion. When GLINTERNET and DSA failed to select an exposure truly associated with the outcome, they tended to select a highly correlated one. When interactions were not present in the data, using variable selection methods that allowed for interactions had only slight costs in performance compared to methods that only searched for main effects. CONCLUSIONS: GLINTERNET and DSA provided better performance in detecting two-way interactions, compared to other existing methods.


Assuntos
Exposição Ambiental , Saúde Ambiental/métodos , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Modelos Estatísticos , Humanos
12.
Am J Epidemiol ; 185(4): 247-258, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28087514

RESUMO

Atmospheric pollutants and meteorological conditions are suspected to be causes of preterm birth. We aimed to characterize their possible association with the risk of preterm birth (defined as birth occurring before 37 completed gestational weeks). We pooled individual data from 13 birth cohorts in 11 European countries (71,493 births from the period 1994-2011, European Study of Cohorts for Air Pollution Effects (ESCAPE)). City-specific meteorological data from routine monitors were averaged over time windows spanning from 1 week to the whole pregnancy. Atmospheric pollution measurements (nitrogen oxides and particulate matter) were combined with data from permanent monitors and land-use data into seasonally adjusted land-use regression models. Preterm birth risks associated with air pollution and meteorological factors were estimated using adjusted discrete-time Cox models. The frequency of preterm birth was 5.0%. Preterm birth risk tended to increase with first-trimester average atmospheric pressure (odds ratio per 5-mbar increase = 1.06, 95% confidence interval: 1.01, 1.11), which could not be distinguished from altitude. There was also some evidence of an increase in preterm birth risk with first-trimester average temperature in the -5°C to 15°C range, with a plateau afterwards (spline coding, P = 0.08). No evidence of adverse association with atmospheric pollutants was observed. Our study lends support for an increase in preterm birth risk with atmospheric pressure.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Pressão Atmosférica , Conceitos Meteorológicos , Nascimento Prematuro/etiologia , Europa (Continente) , Humanos , Nascimento Prematuro/induzido quimicamente , Modelos de Riscos Proporcionais , Saúde da População Urbana
13.
Environ Health Perspect ; 124(12): 1848-1856, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27219331

RESUMO

BACKGROUND: The exposome constitutes a promising framework to improve understanding of the effects of environmental exposures on health by explicitly considering multiple testing and avoiding selective reporting. However, exposome studies are challenged by the simultaneous consideration of many correlated exposures. OBJECTIVES: We compared the performances of linear regression-based statistical methods in assessing exposome-health associations. METHODS: In a simulation study, we generated 237 exposure covariates with a realistic correlation structure and with a health outcome linearly related to 0 to 25 of these covariates. Statistical methods were compared primarily in terms of false discovery proportion (FDP) and sensitivity. RESULTS: On average over all simulation settings, the elastic net and sparse partial least-squares regression showed a sensitivity of 76% and an FDP of 44%; Graphical Unit Evolutionary Stochastic Search (GUESS) and the deletion/substitution/addition (DSA) algorithm revealed a sensitivity of 81% and an FDP of 34%. The environment-wide association study (EWAS) underperformed these methods in terms of FDP (average FDP, 86%) despite a higher sensitivity. Performances decreased considerably when assuming an exposome exposure matrix with high levels of correlation between covariates. CONCLUSIONS: Correlation between exposures is a challenge for exposome research, and the statistical methods investigated in this study were limited in their ability to efficiently differentiate true predictors from correlated covariates in a realistic exposome context. Although GUESS and DSA provided a marginally better balance between sensitivity and FDP, they did not outperform the other multivariate methods across all scenarios and properties examined, and computational complexity and flexibility should also be considered when choosing between these methods. Citation: Agier L, Portengen L, Chadeau-Hyam M, Basagaña X, Giorgis-Allemand L, Siroux V, Robinson O, Vlaanderen J, González JR, Nieuwenhuijsen MJ, Vineis P, Vrijheid M, Slama R, Vermeulen R. 2016. A systematic comparison of linear regression-based statistical methods to assess exposome-health associations. Environ Health Perspect 124:1848-1856; http://dx.doi.org/10.1289/EHP172.


Assuntos
Exposição Ambiental , Monitoramento Ambiental/métodos , Poluentes Ambientais/toxicidade , Humanos , Modelos Lineares
14.
Epidemiology ; 27(3): 378-88, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27035688

RESUMO

BACKGROUND: For chemicals with high within-subject temporal variability, assessing exposure biomarkers in a spot biospecimen poorly estimates average levels over long periods. The objective is to characterize the ability of within-subject pooling of biospecimens to reduce bias due to exposure misclassification when within-subject variability in biomarker concentrations is high. METHODS: We considered chemicals with intraclass correlation coefficients of 0.6 and 0.2. In a simulation study, we hypothesized that the chemical urinary concentrations averaged over a given time period were associated with a health outcome and estimated the bias of studies assessing exposure that collected 1 to 50 random biospecimens per subject. We assumed a classical type error. We studied associations using a within-subject pooling approach and two measurement error models (simulation extrapolation and regression calibration), the latter requiring the assay of more than one biospecimen per subject. RESULTS: For both continuous and binary outcomes, using one sample led to attenuation bias of 40% and 80% for compounds with intraclass correlation coefficients of 0.6 and 0.2, respectively. For a compound with an intraclass correlation coefficient of 0.6, the numbers of biospecimens required to limit bias to less than 10% were 6, 2, and 2 biospecimens with the pooling, simulation extrapolation, and regression calibration methods (these values were, respectively, 35, 8, and 2 for a compound with an intraclass correlation coefficient of 0.2). Compared with pooling, these methods did not improve power. CONCLUSION: Within-subject pooling limits attenuation bias without increasing assay costs. Simulation extrapolation and regression calibration further limit bias, compared with the pooling approach, but increase assay costs.


Assuntos
Viés , Biomarcadores/urina , Simulação por Computador , Manejo de Espécimes , Urina/química , Calibragem , Humanos , Análise de Regressão
15.
Environ Health Perspect ; 124(1): 141-50, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26046983

RESUMO

BACKGROUND: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn's size have been little examined. OBJECTIVE: We aimed to investigate the associations of exposure to elemental constituents of PM with term low birth weight (LBW; weight < 2,500 g among births after 37 weeks of gestation), mean birth weight, and head circumference, relying on standardized fine-scale exposure assessment and with extensive control for potential confounders. METHODS: We pooled data from eight European cohorts comprising 34,923 singleton births in 1994-2008. Annual average concentrations of elemental constituents of PM ≤ 2.5 and ≤ 10 µm (PM2.5 and PM10) at maternal home addresses during pregnancy were estimated using land-use regression models. Adjusted associations between each birth measurement and concentrations of eight elements (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) were calculated using random-effects regression on pooled data. RESULTS: A 200-ng/m3 increase in sulfur in PM2.5 was associated with an increased risk of LBW (adjusted odds ratio = 1.36; 95% confidence interval: 1.17, 1.58). Increased nickel and zinc in PM2.5 concentrations were also associated with an increased risk of LBW. Head circumference was reduced at higher exposure to all elements except potassium. All associations with sulfur were most robust to adjustment for PM2.5 mass concentration. All results were similar for PM10. CONCLUSION: Sulfur, reflecting secondary combustion particles in this study, may adversely affect LBW and head circumference, independently of particle mass. CITATION: Pedersen M, Gehring U, Beelen R, Wang M, Giorgis-Allemand L, Andersen AM, Basagaña X, Bernard C, Cirach M, Forastiere F, de Hoogh K, Grazuleviciene R, Gruzieva O, Hoek G, Jedynska A, Klümper C, Kooter IM, Krämer U, Kukkonen J, Porta D, Postma DS, Raaschou-Nielsen O, van Rossem L, Sunyer J, Sørensen M, Tsai MY, Vrijkotte TG, Wilhelm M, Nieuwenhuijsen MJ, Pershagen G, Brunekreef B, Kogevinas M, Slama R. 2016. Elemental constituents of particulate matter and newborn's size in eight European cohorts. Environ Health Perspect 124:141-150; http://dx.doi.org/10.1289/ehp.1409546.


Assuntos
Material Particulado/toxicidade , Poluentes Atmosféricos/toxicidade , Peso ao Nascer/efeitos dos fármacos , Cobre/toxicidade , Humanos , Recém-Nascido , Ferro/toxicidade , Níquel/toxicidade , Silício/toxicidade , Enxofre/toxicidade , Zinco/toxicidade
16.
Environ Health Perspect ; 124(1): 133-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26068947

RESUMO

BACKGROUND: Prenatal exposure to air pollutants has been suggested as a possible etiologic factor for the occurrence of autism spectrum disorder. OBJECTIVES: We aimed to assess whether prenatal air pollution exposure is associated with childhood autistic traits in the general population. METHODS: Ours was a collaborative study of four European population-based birth/child cohorts-CATSS (Sweden), Generation R (the Netherlands), GASPII (Italy), and INMA (Spain). Nitrogen oxides (NO2, NOx) and particulate matter (PM) with diameters of ≤ 2.5 µm (PM2.5), ≤ 10 µm (PM10), and between 2.5 and 10 µm (PM(coarse)), and PM2.5 absorbance were estimated for birth addresses by land-use regression models based on monitoring campaigns performed between 2008 and 2011. Levels were extrapolated back in time to exact pregnancy periods. We quantitatively assessed autistic traits when the child was between 4 and 10 years of age. Children were classified with autistic traits within the borderline/clinical range and within the clinical range using validated cut-offs. Adjusted cohort-specific effect estimates were combined using random-effects meta-analysis. RESULTS: A total of 8,079 children were included. Prenatal air pollution exposure was not associated with autistic traits within the borderline/clinical range (odds ratio = 0.94; 95% CI: 0.81, 1.10 per each 10-µg/m3 increase in NO2 pregnancy levels). Similar results were observed in the different cohorts, for the other pollutants, and in assessments of children with autistic traits within the clinical range or children with autistic traits as a quantitative score. CONCLUSIONS: Prenatal exposure to NO2 and PM was not associated with autistic traits in children from 4 to 10 years of age in four European population-based birth/child cohort studies. CITATION: Guxens M, Ghassabian A, Gong T, Garcia-Esteban R, Porta D, Giorgis-Allemand L, Almqvist C, Aranbarri A, Beelen R, Badaloni C, Cesaroni G, de Nazelle A, Estarlich M, Forastiere F, Forns J, Gehring U, Ibarluzea J, Jaddoe VW, Korek M, Lichtenstein P, Nieuwenhuijsen MJ, Rebagliato M, Slama R, Tiemeier H, Verhulst FC, Volk HE, Pershagen G, Brunekreef B, Sunyer J. 2016. Air pollution exposure during pregnancy and childhood autistic traits in four European population-based cohort studies: the ESCAPE Project. Environ Health Perspect 124:133-140; http://dx.doi.org/10.1289/ehp.1408483.


Assuntos
Poluição do Ar/efeitos adversos , Transtorno Autístico/epidemiologia , Material Particulado/toxicidade , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Óxidos de Nitrogênio/metabolismo , Gravidez
17.
Environ Int ; 84: 161-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26300245

RESUMO

Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=-0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=-0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Dióxido de Nitrogênio/análise , Adulto , Algoritmos , Monitoramento Ambiental/métodos , Feminino , França , Sistemas de Informação Geográfica , Substâncias Perigosas , Humanos , Modelos Teóricos , Gravidez , Análise de Regressão , Análise Espaço-Temporal , População Urbana , Adulto Jovem
18.
Epidemiology ; 25(5): 636-47, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25036432

RESUMO

BACKGROUND: Accumulating evidence from laboratory animal and human studies suggests that air pollution exposure during pregnancy affects cognitive and psychomotor development in childhood. METHODS: We analyzed data from 6 European population-based birth cohorts-GENERATION R (The Netherlands), DUISBURG (Germany), EDEN (France), GASPII (Italy), RHEA (Greece), and INMA (Spain)-that recruited mother-infant pairs from 1997 to 2008. Air pollution levels-nitrogen oxides (NO2, NOx) in all regions and particulate matter (PM) with diameters of <2.5, <10, and 2.5-10 µm (PM2.5, PM10, and PMcoarse, respectively) and PM2.5 absorbance in a subgroup-at birth addresses were estimated by land-use regression models, based on monitoring campaigns performed primarily between 2008 and 2011. Levels were back-extrapolated to exact pregnancy periods using background monitoring sites. Cognitive and psychomotor development was assessed between 1 and 6 years of age. Adjusted region-specific effect estimates were combined using random-effects meta-analysis. RESULTS: A total of 9482 children were included. Air pollution exposure during pregnancy, particularly NO2, was associated with reduced psychomotor development (global psychomotor development score decreased by 0.68 points [95% confidence interval = -1.25 to -0.11] per increase of 10 µg/m in NO2). Similar trends were observed in most regions. No associations were found between any air pollutant and cognitive development. CONCLUSIONS: Air pollution exposure during pregnancy, particularly NO2 (for which motorized traffic is a major source), was associated with delayed psychomotor development during childhood. Due to the widespread nature of air pollution exposure, the public health impact of the small changes observed at an individual level could be considerable.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Desenvolvimento Infantil/efeitos dos fármacos , Cognição/efeitos dos fármacos , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Desempenho Psicomotor/efeitos dos fármacos , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/induzido quimicamente , Deficiências do Desenvolvimento/diagnóstico , Monitoramento Ambiental , Europa (Continente) , Feminino , Humanos , Lactente , Modelos Lineares , Masculino , Modelos Teóricos , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/toxicidade , Material Particulado/análise , Material Particulado/toxicidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/diagnóstico , Estudos Prospectivos
19.
Environ Int ; 66: 165-73, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598283

RESUMO

BACKGROUND: Spatially resolved exposure models are increasingly used in epidemiology. We previously reported that, although exhibiting a moderate correlation, pregnancy nitrogen dioxide (NO2) levels estimated by the nearest air quality monitoring station (AQMS) model and a geostatistical model, showed similar associations with infant birth weight. OBJECTIVES: We extended this study by comparing a total of four exposure models, including two highly spatially resolved models: a land-use regression (LUR) model and a dispersion model. Comparisons were made in terms of predicted NO2 and particle (aerodynamic diameter<10 µm, PM10) exposure and adjusted association with birth weight. METHODS: The four exposure models were implemented in two French metropolitan areas where 1026 pregnant women were followed as part of the EDEN mother-child cohort. RESULTS: Correlations between model predictions were high (≥ 0.70), except for NO2 between the AQMS and both the LUR (r = 0.54) and dispersion models (r = 0.63). Spatial variations as estimated by the AQMS model were greater for NO2 (95%) than for PM10 (22%). The direction of effect estimates of NO2 on birth weight varied according to the exposure model, while PM10 effect estimates were more consistent across exposure models. CONCLUSIONS: For PM10, highly spatially resolved exposure model agreed with the poor spatial resolution AQMS model in terms of estimated pollutant levels and health effects. For more spatially heterogeneous pollutants like NO2, although predicted levels from spatially resolved models (all but AQMS) agreed with each other, our results suggest that some may disagree with each other as well as with the AQMS regarding the direction of the estimated health effects.


Assuntos
Exposição Ambiental/análise , Métodos Epidemiológicos , Modelos Teóricos , Material Particulado/análise , Adulto , Peso ao Nascer/efeitos dos fármacos , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Recém-Nascido , Masculino , Dióxido de Nitrogênio/análise , Tamanho da Partícula , Material Particulado/toxicidade , Gravidez , Reprodutibilidade dos Testes , Adulto Jovem
20.
Epidemiology ; 24(6): 871-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24051894

RESUMO

BACKGROUND: Epidemiologic studies have reported associations between air pollution levels and semen characteristics, which might in turn affect a couple's ability to achieve a live birth. Our aim was to characterize short-term effects of atmospheric pollutants on fecundability (the month-specific probability of pregnancy among noncontracepting couples). METHODS: For a cohort of births between 1994 and 1999 in Teplice (Czech Republic), we averaged fine particulate matter (PM2.5), carcinogenic polycyclic aromatic hydrocarbons, ozone, nitrogen dioxide (NO2), and sulfur dioxide levels estimated from a central measurement site over the 60-day period before the end of the first month of unprotected intercourse. We estimated changes in the probability of occurrence of a pregnancy during the first month of unprotected intercourse associated with exposure, using binomial regression and adjusting for maternal behaviors and time trends. RESULTS: Among the 1,916 recruited couples, 486 (25%) conceived during the first month of unprotected intercourse. Each increase of 10 µg/m in PM2.5 levels was associated with an adjusted decrease in fecundability of 22% (95% confidence interval = 6%-35%). NO2 levels were also associated with decreased fecundability. There was no evidence of adverse effects with the other pollutants considered. Biases related to pregnancy planning or temporal trends in air pollution were unlikely to explain the observed associations. CONCLUSIONS: In this polluted area, we highlighted short-term decreases in a couple's ability to conceive in association with PM2.5 and NO2 levels assessed in a central monitoring station.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Fertilidade , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos de Coortes , República Tcheca , Exposição Ambiental/estatística & dados numéricos , Feminino , Humanos , Masculino , Gravidez , Probabilidade , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA