Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 38(1): 446, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676012

RESUMO

BACKGROUND: NOTCH1 gene mutations in mantle cell lymphoma (MCL) have been described in about 5-10% of cases and are associated with significantly shorter survival rates. The present study aimed to investigate the biological impact of this mutation in MCL and its potential as a therapeutic target. METHODS: Activation of Notch1 signaling upon ligand-stimulation and inhibitory effects of the monoclonal anti-Notch1 antibody OMP-52M51 in NOTCH1-mutated and -unmutated MCL cells were assessed by Western Blot and gene expression profiling. Effects of OMP-52M51 treatment on tumor cell migration and tumor angiogenesis were evaluated with chemotaxis and HUVEC tube formation assays. The expression of Delta-like ligand 4 (DLL4) in MCL lymph nodes was analyzed by immunofluorescence staining and confocal microscopy. A MCL mouse model was used to assess the activity of OMP-52M51 in vivo. RESULTS: Notch1 expression can be effectively stimulated in NOTCH1-mutated Mino cells by DLL4, whereas in the NOTCH1-unmutated cell line JeKo-1, less effect was observed upon any ligand-stimulation. DLL4 was expressed by histiocytes in both, NOTCH1-mutated and -unmutated MCL lymph nodes. Treatment of NOTCH1-mutated MCL cells with the monoclonal anti-Notch1 antibody OMP-52M51 effectively prevented DLL4-dependent activation of Notch1 and suppressed the induction of numerous direct Notch target genes involved in lymphoid biology, lymphomagenesis and disease progression. Importantly, in lymph nodes from primary MCL cases with NOTCH1/2 mutations, we detected an upregulation of the same gene sets as observed in DLL4-stimulated Mino cells. Furthermore, DLL4 stimulation of NOTCH1-mutated Mino cells enhanced tumor cell migration and angiogenesis, which could be abolished by treatment with OMP-52M51. Importantly, the effects observed were specific for NOTCH1-mutated cells as they did not occur in the NOTCH1-wt cell line JeKo-1. Finally, we confirmed the potential activity of OMP-52M51 to inhibit DLL4-induced Notch1-Signaling in vivo in a xenograft mouse model of MCL. CONCLUSION: DLL4 effectively stimulates Notch1 signaling in NOTCH1-mutated MCL and is expressed by the microenvironment in MCL lymph nodes. Our results indicate that specific inhibition of the Notch1-ligand-receptor interaction might provide a therapeutic alternative for a subset of MCL patients.

2.
Oncogene ; 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31616059

RESUMO

Targeting Notch signaling has emerged as a promising therapeutic strategy for chronic lymphocytic leukemia (CLL), particularly in NOTCH1-mutated patients. We provide first evidence that the Notch ligand DLL4 is a potent stimulator of Notch signaling in NOTCH1-mutated CLL cells while increases cell proliferation. Importantly, DLL4 is expressed in histiocytes from the lymph node, both in NOTCH1-mutated and -unmutated cases. We also show that the DLL4-induced activation of the Notch signaling pathway can be efficiently blocked with the specific anti-Notch1 antibody OMP-52M51. Accordingly, OMP-52M51 also reverses Notch-induced MYC, CCND1, and NPM1 gene expression as well as cell proliferation in NOTCH1-mutated CLL cells. In addition, DLL4 stimulation triggers the expression of protumor target genes, such as CXCR4, NRARP, and VEGFA, together with an increase in cell migration and angiogenesis. All these events can be antagonized by OMP-52M51. Collectively, our results emphasize the role of DLL4 stimulation in NOTCH1-mutated CLL and confirm the specific therapeutic targeting of Notch1 as a promising approach for this group of poor prognosis CLL patients.

3.
Int J Cancer ; 144(11): 2762-2773, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468254

RESUMO

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has been shown to be highly effective in patients with chronic lymphocytic leukemia (CLL) and is approved for CLL treatment. Unfortunately, resistance and intolerance to ibrutinib has been observed in several studies, opening the door for more specific BTK inhibitors. CC-292 (spebrutinib) is a BTK inhibitor with increased specificity for BTK and less inhibition of other kinases. Our in vitro studies showed that CC-292 potently inhibited B-cell receptor signaling, activation, proliferation and chemotaxis of CLL cells. In in vivo studies using the adoptive transfer TCL1 mouse model of CLL, CC-292 reduced tumor load and normalized tumor-associated expansion of T cells and monocytes, while not affecting T cell function. Importantly, the combination of CC-292 and bendamustine impaired CLL cell proliferation in vivo and enhanced the control of CLL progression. Our results demonstrate that CC-292 is a specific BTK inhibitor with promising performance in combination with bendamustine in CLL. Further clinical trials are warranted to investigate the therapeutic efficacy of this combination regimen.


Assuntos
Acrilamidas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cloridrato de Bendamustina/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Acrilamidas/uso terapêutico , Adulto , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cloridrato de Bendamustina/uso terapêutico , Medula Óssea/patologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Cultura Primária de Células , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Pirimidinas/uso terapêutico , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA