Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cardiovasc Res ; 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31584065

RESUMO

INTRODUCTION: Genome Wide Association studies have consistently identified an association between coronary artery disease (CAD) and a locus on chromosome 10 containing a single gene, JCAD (formerly KIAA1462). However, little is known about the mechanism by which JCAD could influence the development of atherosclerosis. METHODS AND RESULTS: Vascular function was quantified in subjects with CAD by flow mediated dilatation [FMD] and vasorelaxation responses in isolated blood vessel segments. The JCAD risk allele identified by GWAS was associated with reduced FMD and reduced endothelial-dependent relaxations. To study the impact of loss of Jcad on atherosclerosis, Jcad-/- mice were crossed to an ApoE-/- background and fed a high fat diet from 6 to16 weeks of age. Loss of Jcad did not affect blood pressure or heart rate. However, Jcad-/-ApoE-/- mice developed significantly less atherosclerosis in the aortic root and the inner curvature of the aortic arch. En-face analysis revealed a striking reduction in pro-inflammatory adhesion molecules at sites of disturbed flow on the endothelial cell layer of Jcad-/- mice. Loss of Jcad lead to a reduced recovery perfusion in response to hind limb ischemia, a model of altered in vivo flow. Knock down of JCAD using siRNA in primary human aortic endothelial cells significantly reduced the response to acute onset of flow, as evidenced by reduced phosphorylation of NF-КB, eNOS and Akt. CONCLUSION: The novel CAD gene JCAD promotes atherosclerotic plaque formation via a role in the endothelial cell shear stress mechanotransduction pathway. TRANSLATIONAL PERSPECTIVE: We reveal that JCAD is a novel coronary artery disease susceptibility gene which determines atherosclerosis progression via a role in the endothelial cell shear stress mechanotransduction pathway. Identifying this new role for JCAD in atherosclerotic plaque progression highlights the importance of new coronary artery disease genes that mediate blood flow mechanotransduction in the pathogenesis of coronary artery disease. These genes are potential novel targets for treatments to reduce atherosclerotic plaque formation, independent of established risk factors and biological mechanisms.

2.
Bioinformatics ; 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31350884

RESUMO

MOTIVATION: Common small-effect genetic variants that contribute to human complex traits and disease are typically identified using traditional fixed-effect meta-analysis methods. However, the power to detect genetic associations under fixed-effect models deteriorates with increasing heterogeneity, so that some small-effect heterogeneous loci might go undetected. Han and Eskin developed a modified random-effects meta-analysis approach (RE2) that is more powerful than traditional fixed and random-effects methods at detecting small-effect heterogeneous genetic associations, updating the method (RE2C) to identify small-effect heterogeneous variants overlooked by traditional fixed-effect meta-analysis. Here we re-appraise a large-scale meta-analysis of coronary disease with RE2C to search for small-effect genetic signals potentially masked by heterogeneity in a fixed-effect meta-analysis. RESULTS: Our application of RE2C suggests a high sensitivity but low specificity of this approach for discovering small-effect heterogeneous genetic associations. We recommend that reports of small-effect heterogeneous loci discovered with RE2C are accompanied by forest plots and SPRE (standardized predicted random-effects) statistics to reveal the distribution of genetic effect estimates across component studies of meta-analyses, highlighting overly influential outlier studies with the potential to inflate genetic signals. AVAILABILITY: Scripts to calculate SPRE statistics and generate forest plots are available in the getspres R package entitled from https://magosil86.github.io/getspres/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Online.

3.
Hum Mol Genet ; 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31127295

RESUMO

Elevated blood pressure (BP), a leading cause of global morbidity and mortality, is influenced by both genetic and lifestyle factors. Cigarette smoking is one such lifestyle factor. Across five ancestries, we performed a genome-wide gene-smoking interaction study of mean arterial pressure (MAP) and pulse pressure (PP) in 129 913 individuals in stage 1 and follow-up analysis in 480 178 additional individuals in stage 2. We report here 136 loci significantly associated with MAP and/or PP. Of these, 61 were previously published through main-effect analysis of BP traits, 37 were recently reported by us for systolic BP and/or diastolic BP through gene-smoking interaction analysis and 38 were newly identified (P < 5 × 10-8, false discovery rate < 0.05). We also identified nine new signals near known loci. Of the 136 loci, 8 showed significant interaction with smoking status. They include CSMD1 previously reported for insulin resistance and BP in the spontaneously hypertensive rats. Many of the 38 new loci show biologic plausibility for a role in BP regulation. SLC26A7 encodes a chloride/bicarbonate exchanger expressed in the renal outer medullary collecting duct. AVPR1A is widely expressed, including in vascular smooth muscle cells, kidney, myocardium and brain. FHAD1 is a long non-coding RNA overexpressed in heart failure. TMEM51 was associated with contractile function in cardiomyocytes. CASP9 plays a central role in cardiomyocyte apoptosis. Identified only in African ancestry were 30 novel loci. Our findings highlight the value of multi-ancestry investigations, particularly in studies of interaction with lifestyle factors, where genomic and lifestyle differences may contribute to novel findings.

4.
Sci Rep ; 9(1): 7339, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31089183

RESUMO

CADM2 has been associated with a range of behavioural and metabolic traits, including physical activity, risk-taking, educational attainment, alcohol and cannabis use and obesity. Here, we set out to determine whether CADM2 contributes to mechanisms shared between mental and physical health disorders. We assessed genetic variants in the CADM2 locus for association with phenotypes in the UK Biobank, IMPROVE, PROCARDIS and SCARFSHEEP studies, before performing meta-analyses. A wide range of metabolic phenotypes were meta-analysed. Psychological phenotypes analysed in UK Biobank only were major depressive disorder, generalised anxiety disorder, bipolar disorder, neuroticism, mood instability and risk-taking behaviour. In UK Biobank, four, 88 and 172 genetic variants were significantly (p < 1 × 10-5) associated with neuroticism, mood instability and risk-taking respectively. In meta-analyses of 4 cohorts, we identified 362, 63 and 11 genetic variants significantly (p < 1 × 10-5) associated with BMI, SBP and CRP respectively. Genetic effects on BMI, CRP and risk-taking were all positively correlated, and were consistently inversely correlated with genetic effects on SBP, mood instability and neuroticism. Conditional analyses suggested an overlap in the signals for physical and psychological traits. Many significant variants had genotype-specific effects on CADM2 expression levels in adult brain and adipose tissues. CADM2 variants influence a wide range of both psychological and metabolic traits, suggesting common biological mechanisms across phenotypes via regulation of CADM2 expression levels in adipose tissue. Functional studies of CADM2 are required to fully understand mechanisms connecting mental and physical health conditions.

5.
Nat Genet ; 51(4): 636-648, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30926973

RESUMO

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.


Assuntos
Lipídeos/sangue , Lipídeos/genética , Fumar/sangue , Fumar/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla/métodos , Genótipo , Humanos , Estilo de Vida , Desequilíbrio de Ligação/genética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Am J Epidemiol ; 188(6): 1033-1054, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30698716

RESUMO

A person's lipid profile is influenced by genetic variants and alcohol consumption, but the contribution of interactions between these exposures has not been studied. We therefore incorporated gene-alcohol interactions into a multiancestry genome-wide association study of levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triglycerides. We included 45 studies in stage 1 (genome-wide discovery) and 66 studies in stage 2 (focused follow-up), for a total of 394,584 individuals from 5 ancestry groups. Analyses covered the period July 2014-November 2017. Genetic main effects and interaction effects were jointly assessed by means of a 2-degrees-of-freedom (df) test, and a 1-df test was used to assess the interaction effects alone. Variants at 495 loci were at least suggestively associated (P < 1 × 10-6) with lipid levels in stage 1 and were evaluated in stage 2, followed by combined analyses of stage 1 and stage 2. In the combined analysis of stages 1 and 2, a total of 147 independent loci were associated with lipid levels at P < 5 × 10-8 using 2-df tests, of which 18 were novel. No genome-wide-significant associations were found testing the interaction effect alone. The novel loci included several genes (proprotein convertase subtilisin/kexin type 5 (PCSK5), vascular endothelial growth factor B (VEGFB), and apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 (APOBEC1) complementation factor (A1CF)) that have a putative role in lipid metabolism on the basis of existing evidence from cellular and experimental models.

7.
Hypertension ; 72(4): 937-945, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30287978

RESUMO

Offspring of hypertensive pregnancies are at increased risk of developing hypertension in adulthood. In the neonatal period they display endothelial cell dysfunction and altered microvascular development. MicroRNAs, as important endothelial cellular regulators, may play a role in this early endothelial dysfunction. Therefore we identified differential microRNA patterns in endothelial cells from offspring of hypertensive pregnancies and determined their role in postnatal vascular cell function. Studies were performed on human umbilical vein endothelial cell (HUVECs) samples from 57 pregnancies. Unbiased RNA-sequencing identified 30 endothelial-related microRNAs differentially expressed in HUVECs from hypertensive compared to normotensive pregnancies. Quantitative reverse transcription PCR (RT-qPCR) confirmed a significant higher expression level of the top candidate, miR-146a. Combined miR-146a targeted gene expression and pathway analysis revealed significant alterations in genes involved in inflammation, angiogenesis and immune response in the same HUVECs. Elevated miR-146a expression level at birth identified cells with reduced ability for in vitro vascular tube formation, which was rescued by miR-146a inhibition. In contrast, miR-146a overexpression significantly reduced vascular tube formation in HUVECs from normotensive pregnancies. Finally, we confirmed that mir146a levels at birth predicted in vivo microvascular development during the first three postnatal months. Offspring of hypertensive pregnancy have a distinct endothelial regulatory microRNA profile at birth, which is related to altered endothelial cell behaviour, and predicts patterns of microvascular development during the first three months of life. Modification of this microRNA profile in vitro can restore impaired vascular cell function.

8.
Arterioscler Thromb Vasc Biol ; 38(11): 2718-2730, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30354237

RESUMO

Objective- Plaque macrophages are intricately involved in atherogenesis and plaque destabilization. We sought to identify functional pathways in human plaque macrophages that are differentially regulated in respect of (1) plaque stability and (2) lipid content. We hypothesized that differentially regulated macrophage gene sets would relate to genome-wide association study variants associated with risk of acute complications of atherosclerosis. Approach and Results- Forty patients underwent carotid magnetic resonance imaging for lipid quantification before endarterectomy. Carotid plaque macrophages were procured by laser capture microdissection from (1) lipid core and (2) cap region, in 12 recently symptomatic and 12 asymptomatic carotid plaques. Applying gene set enrichment analysis, a number of gene sets were found to selectively upregulate in symptomatic plaque macrophages, which corresponded to 7 functional pathways: inflammation, lipid metabolism, hypoxic response, cell proliferation, apoptosis, antigen presentation, and cellular energetics. Predicted upstream regulators included IL-1ß, TNF-α, and NF-κB. In vivo lipid quantification by magnetic resonance imaging correlated most strongly with the upregulation of genes of the IFN/ STAT1 pathways. Cross-interrogation of gene set enrichment analysis and meta-analysis gene set enrichment of variant associations showed lipid metabolism pathways, driven by genes coding for APOE and ABCA1/G1 coincided with known risk-associated SNPs (single nucleotide polymorphisms) from genome-wide association studies. Conclusions- Macrophages from recently symptomatic carotid plaques show differential regulation of functional gene pathways. There were additional quantitative relationships between plaque lipid content and key gene sets. The data show a plausible mechanism by which known genome-wide association study risk variants for atherosclerotic complications could be linked to (1) a relevant cellular process, in (2) the key cell type of atherosclerosis, in (3) a human disease-relevant setting.

9.
J Mol Cell Cardiol ; 121: 287-296, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30048712

RESUMO

Cysteine and glycine rich protein 3 (CSRP3) encodes Muscle LIM Protein (MLP), a well-established disease gene for Hypertrophic Cardiomyopathy (HCM). MLP, in contrast to the proteins encoded by the other recognised HCM disease genes, is non-sarcomeric, and has important signalling functions in cardiomyocytes. To gain insight into the disease mechanisms involved, we generated a knock-in mouse (KI) model, carrying the well documented HCM-causing CSRP3 mutation C58G. In vivo phenotyping of homozygous KI/KI mice revealed a robust cardiomyopathy phenotype with diastolic and systolic left ventricular dysfunction, which was supported by increased heart weight measurements. Transcriptome analysis by RNA-seq identified activation of pro-fibrotic signalling, induction of the fetal gene programme and activation of markers of hypertrophic signalling in these hearts. Further ex vivo analyses validated the activation of these pathways at transcript and protein level. Intriguingly, the abundance of MLP decreased in KI/KI mice by 80% and in KI/+ mice by 50%. Protein depletion was also observed in cellular studies for two further HCM-causing CSRP3 mutations (L44P and S54R/E55G). We show that MLP depletion is caused by proteasome action. Moreover, MLP C58G interacts with Bag3 and results in a proteotoxic response in the homozygous knock-in mice, as shown by induction of Bag3 and associated heat shock proteins. In conclusion, the newly generated mouse model provides insights into the underlying disease mechanisms of cardiomyopathy caused by mutations in the non-sarcomeric protein MLP. Furthermore, our cellular experiments suggest that protein depletion and proteasomal overload also play a role in other HCM-causing CSPR3 mutations that we investigated, indicating that reduced levels of functional MLP may be a common mechanism for HCM-causing CSPR3 mutations.

10.
PLoS One ; 13(6): e0198166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912962

RESUMO

Heavy alcohol consumption is an established risk factor for hypertension; the mechanism by which alcohol consumption impact blood pressure (BP) regulation remains unknown. We hypothesized that a genome-wide association study accounting for gene-alcohol consumption interaction for BP might identify additional BP loci and contribute to the understanding of alcohol-related BP regulation. We conducted a large two-stage investigation incorporating joint testing of main genetic effects and single nucleotide variant (SNV)-alcohol consumption interactions. In Stage 1, genome-wide discovery meta-analyses in ≈131K individuals across several ancestry groups yielded 3,514 SNVs (245 loci) with suggestive evidence of association (P < 1.0 x 10-5). In Stage 2, these SNVs were tested for independent external replication in ≈440K individuals across multiple ancestries. We identified and replicated (at Bonferroni correction threshold) five novel BP loci (380 SNVs in 21 genes) and 49 previously reported BP loci (2,159 SNVs in 109 genes) in European ancestry, and in multi-ancestry meta-analyses (P < 5.0 x 10-8). For African ancestry samples, we detected 18 potentially novel BP loci (P < 5.0 x 10-8) in Stage 1 that warrant further replication. Additionally, correlated meta-analysis identified eight novel BP loci (11 genes). Several genes in these loci (e.g., PINX1, GATA4, BLK, FTO and GABBR2) have been previously reported to be associated with alcohol consumption. These findings provide insights into the role of alcohol consumption in the genetic architecture of hypertension.

11.
Sci Rep ; 8(1): 7102, 2018 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-29740026

RESUMO

Epidemiological studies suggest a positive association between coronary artery disease (CAD) and late-onset Alzheimer's disease (LOAD). This large-scale genetic study brings together 'big data' resources to examine the causal impact of genetic determinants of CAD on risk of LOAD. A two-sample Mendelian randomization approach was adopted to estimate the causal effect of CAD on risk of LOAD using summary data from 60,801 CAD cases from CARDIoGRAMplusC4D and 17,008 LOAD cases from the IGAP Consortium. Additional analyses assessed the independent relevance of genetic associations at the APOE locus for both CAD and LOAD. Higher genetically determined risk of CAD was associated with a slightly higher risk of LOAD (Odds Ratio (OR) per log-odds unit of CAD [95% CI]: 1.07 [1.01-1.15]; p = 0.027). However, after exclusion of the APOE locus, the estimate of the causal effect of CAD for LOAD was attenuated and no longer significant (OR 0.94 [0.88-1.01]; p = 0.072). This Mendelian randomization study indicates that the APOE locus is the chief determinant of shared genetic architecture between CAD and LOAD, and suggests a lack of causal relevance of CAD for risk of LOAD after exclusion of APOE.

12.
Sci Rep ; 8(1): 3434, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467471

RESUMO

Genome-wide association studies (GWAS) have identified over two hundred chromosomal loci that modulate risk of coronary artery disease (CAD). The genes affected by variants at these loci are largely unknown and an untapped resource to improve our understanding of CAD pathophysiology and identify potential therapeutic targets. Here, we prioritized 68 genes as the most likely causal genes at genome-wide significant loci identified by GWAS of CAD and examined their regulatory roles in 286 metabolic and vascular tissue gene-protein sub-networks ("modules"). The modules and genes within were scored for CAD druggability potential. The scoring enriched for targets of cardiometabolic drugs currently in clinical use and in-depth analysis of the top-scoring modules validated established and revealed novel target tissues, biological processes, and druggable targets. This study provides an unprecedented resource of tissue-defined gene-protein interactions directly affected by genetic variance in CAD risk loci.

13.
Am J Hum Genet ; 102(3): 375-400, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29455858

RESUMO

Genome-wide association analysis advanced understanding of blood pressure (BP), a major risk factor for vascular conditions such as coronary heart disease and stroke. Accounting for smoking behavior may help identify BP loci and extend our knowledge of its genetic architecture. We performed genome-wide association meta-analyses of systolic and diastolic BP incorporating gene-smoking interactions in 610,091 individuals. Stage 1 analysis examined ∼18.8 million SNPs and small insertion/deletion variants in 129,913 individuals from four ancestries (European, African, Asian, and Hispanic) with follow-up analysis of promising variants in 480,178 additional individuals from five ancestries. We identified 15 loci that were genome-wide significant (p < 5 × 10-8) in stage 1 and formally replicated in stage 2. A combined stage 1 and 2 meta-analysis identified 66 additional genome-wide significant loci (13, 35, and 18 loci in European, African, and trans-ancestry, respectively). A total of 56 known BP loci were also identified by our results (p < 5 × 10-8). Of the newly identified loci, ten showed significant interaction with smoking status, but none of them were replicated in stage 2. Several loci were identified in African ancestry, highlighting the importance of genetic studies in diverse populations. The identified loci show strong evidence for regulatory features and support shared pathophysiology with cardiometabolic and addiction traits. They also highlight a role in BP regulation for biological candidates such as modulators of vascular structure and function (CDKN1B, BCAR1-CFDP1, PXDN, EEA1), ciliopathies (SDCCAG8, RPGRIP1L), telomere maintenance (TNKS, PINX1, AKTIP), and central dopaminergic signaling (MSRA, EBF2).

14.
Sci Rep ; 7(1): 12496, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28970529

RESUMO

Chronic otitis media with effusion (COME) is the most common cause of hearing loss in children, and known to have high heritability. Mutant mouse models have identified Fbxo11, Evi1, Tgif1, and Nisch as potential risk loci. We recruited children aged 10 and under undergoing surgical treatment for COME from 35 hospitals in the UK, and their nuclear family. We performed association testing with the loci FBXO11, EVI1, TGIF1 and NISCH and sought to replicate significant results in a case-control cohort from Finland. We tested 1296 families (3828 individuals), and found strength of association with the T allele at rs881835 (p = 0.006, OR 1.39) and the G allele at rs1962914 (p = 0.007, OR 1.58) at TGIF1, and the A allele at rs10490302 (p = 0.016, OR 1.17) and the G allele at rs2537742 (p = 0.038, OR 1.16) at FBXO11. Results were not replicated. This study supports smaller studies that have also suggested association of otitis media with polymorphism at FBX011, but this is the first study to report association with the locus TGIF1. Both FBX011 and TGIF1 are involved in TGF-ß signalling, suggesting this pathway may be important in the transition from acute to chronic middle ear inflammation, and a potential molecular target.

15.
Atherosclerosis ; 266: 196-204, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29040868

RESUMO

BACKGROUND AND AIMS: Increased proinsulin relative to insulin levels have been associated with subclinical atherosclerosis (measured by carotid intima-media thickness (cIMT)) and are predictive of future cardiovascular disease (CVD), independently of established risk factors. The mechanisms linking proinsulin to atherosclerosis and CVD are unclear. A genome-wide meta-analysis has identified nine loci associated with circulating proinsulin levels. Using proinsulin-associated SNPs, we set out to use a Mendelian randomisation approach to test the hypothesis that proinsulin plays a causal role in subclinical vascular remodelling. METHODS: We studied the high CVD-risk IMPROVE cohort (n = 3345), which has detailed biochemical phenotyping and repeated, state-of-the-art, high-resolution carotid ultrasound examinations. Genotyping was performed using Illumina Cardio-Metabo and Immuno arrays, which include reported proinsulin-associated loci. Participants with type 2 diabetes (n = 904) were omitted from the analysis. Linear regression was used to identify proinsulin-associated genetic variants. RESULTS: We identified a proinsulin locus on chromosome 15 (rs8029765) and replicated it in data from 20,003 additional individuals. An 11-SNP score, including the previously identified and the chromosome 15 proinsulin-associated loci, was significantly and negatively associated with baseline IMTmean and IMTmax (the primary cIMT phenotypes) but not with progression measures. However, MR-Eggers refuted any significant effect of the proinsulin-associated 11-SNP score, and a non-pleiotropic SNP score of three variants (including rs8029765) demonstrated no effect on baseline or progression cIMT measures. CONCLUSIONS: We identified a novel proinsulin-associated locus and demonstrated that whilst proinsulin levels are associated with cIMT measures, proinsulin per se is unlikely to have a causative effect on cIMT.


Assuntos
Doenças das Artérias Carótidas/genética , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Proinsulina/genética , Remodelação Vascular/genética , Doenças Assintomáticas , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/fisiopatologia , Espessura Intima-Media Carotídea , Cromossomos Humanos Par 15 , Europa (Continente) , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Modelos Lineares , Masculino , Fenótipo , Proinsulina/sangue , Locos de Características Quantitativas , Fatores de Risco
16.
Hypertension ; 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28739976

RESUMO

Elevated blood pressure is a major risk factor for cardiovascular disease and has a substantial genetic contribution. Genetic variation influencing blood pressure has the potential to identify new pharmacological targets for the treatment of hypertension. To discover additional novel blood pressure loci, we used 1000 Genomes Project-based imputation in 150 134 European ancestry individuals and sought significant evidence for independent replication in a further 228 245 individuals. We report 6 new signals of association in or near HSPB7, TNXB, LRP12, LOC283335, SEPT9, and AKT2, and provide new replication evidence for a further 2 signals in EBF2 and NFKBIA Combining large whole-blood gene expression resources totaling 12 607 individuals, we investigated all novel and previously reported signals and identified 48 genes with evidence for involvement in blood pressure regulation that are significant in multiple resources. Three novel kidney-specific signals were also detected. These robustly implicated genes may provide new leads for therapeutic innovation.

17.
Nat Genet ; 49(9): 1385-1391, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714975

RESUMO

Genome-wide association studies (GWAS) in coronary artery disease (CAD) had identified 66 loci at 'genome-wide significance' (P < 5 × 10-8) at the time of this analysis, but a much larger number of putative loci at a false discovery rate (FDR) of 5% (refs. 1,2,3,4). Here we leverage an interim release of UK Biobank (UKBB) data to evaluate the validity of the FDR approach. We tested a CAD phenotype inclusive of angina (SOFT; ncases = 10,801) as well as a stricter definition without angina (HARD; ncases = 6,482) and selected cases with the former phenotype to conduct a meta-analysis using the two most recent CAD GWAS. This approach identified 13 new loci at genome-wide significance, 12 of which were on our previous list of loci meeting the 5% FDR threshold, thus providing strong support that the remaining loci identified by FDR represent genuine signals. The 304 independent variants associated at 5% FDR in this study explain 21.2% of CAD heritability and identify 243 loci that implicate pathways in blood vessel morphogenesis as well as lipid metabolism, nitric oxide signaling and inflammation.


Assuntos
Doença da Artéria Coronariana/genética , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Estudos de Associação Genética/métodos , Estudos de Associação Genética/normas , Estudos de Associação Genética/estatística & dados numéricos , Estudo de Associação Genômica Ampla/normas , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Genótipo , Sistemas de Informação em Saúde/normas , Sistemas de Informação em Saúde/estatística & dados numéricos , Humanos , Metanálise como Assunto , Fenótipo , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fatores de Risco , Reino Unido
18.
PLoS Genet ; 13(5): e1006755, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28459806

RESUMO

Progress in mapping loci associated with common complex diseases or quantitative inherited traits has been expedited by large-scale meta-analyses combining information across multiple studies, assembled through collaborative networks of researchers. Participating studies will usually have been independently designed and implemented in unique settings that are potential sources of phenotype, ancestry or other variability that could introduce between-study heterogeneity into a meta-analysis. Heterogeneity tests based on individual genetic variants (e.g. Q, I2) are not suited to identifying locus-specific from more systematic multi-locus or genome-wide patterns of heterogeneity. We have developed and evaluated an aggregate heterogeneity M statistic that combines between-study heterogeneity information across multiple genetic variants, to reveal systematic patterns of heterogeneity that elude conventional single variant analysis. Application to a GWAS meta-analysis of coronary disease with 48 contributing studies uncovered substantial systematic between-study heterogeneity, which could be partly explained by age-of-disease onset, family-history of disease and ancestry. Future meta-analyses of diseases and traits with multiple known genetic associations can use this approach to identify outlier studies and thereby optimize power to detect novel genetic associations.


Assuntos
Heterogeneidade Genética , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Genótipo , Locos de Características Quantitativas/genética , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Genoma Humano , Humanos , Metanálise como Assunto , Fenótipo
19.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28461624

RESUMO

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Assuntos
Doença das Coronárias/genética , Doença das Coronárias/prevenção & controle , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Fumar/genética , Proteína ADAMTS7/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Doença das Coronárias/epidemiologia , Vasos Coronários/patologia , Vasos Coronários/fisiologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fumar/efeitos adversos , Fumar/epidemiologia
20.
J Am Coll Cardiol ; 69(7): 823-836, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28209224

RESUMO

BACKGROUND: Genome-wide association studies have so far identified 56 loci associated with risk of coronary artery disease (CAD). Many CAD loci show pleiotropy; that is, they are also associated with other diseases or traits. OBJECTIVES: This study sought to systematically test if genetic variants identified for non-CAD diseases/traits also associate with CAD and to undertake a comprehensive analysis of the extent of pleiotropy of all CAD loci. METHODS: In discovery analyses involving 42,335 CAD cases and 78,240 control subjects we tested the association of 29,383 common (minor allele frequency >5%) single nucleotide polymorphisms available on the exome array, which included a substantial proportion of known or suspected single nucleotide polymorphisms associated with common diseases or traits as of 2011. Suggestive association signals were replicated in an additional 30,533 cases and 42,530 control subjects. To evaluate pleiotropy, we tested CAD loci for association with cardiovascular risk factors (lipid traits, blood pressure phenotypes, body mass index, diabetes, and smoking behavior), as well as with other diseases/traits through interrogation of currently available genome-wide association study catalogs. RESULTS: We identified 6 new loci associated with CAD at genome-wide significance: on 2q37 (KCNJ13-GIGYF2), 6p21 (C2), 11p15 (MRVI1-CTR9), 12q13 (LRP1), 12q24 (SCARB1), and 16q13 (CETP). Risk allele frequencies ranged from 0.15 to 0.86, and odds ratio per copy of the risk allele ranged from 1.04 to 1.09. Of 62 new and known CAD loci, 24 (38.7%) showed statistical association with a traditional cardiovascular risk factor, with some showing multiple associations, and 29 (47%) showed associations at p < 1 × 10-4 with a range of other diseases/traits. CONCLUSIONS: We identified 6 loci associated with CAD at genome-wide significance. Several CAD loci show substantial pleiotropy, which may help us understand the mechanisms by which these loci affect CAD risk.


Assuntos
Doença da Artéria Coronariana/genética , Loci Gênicos , Pleiotropia Genética , Estudos de Casos e Controles , Doença da Artéria Coronariana/epidemiologia , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA