RESUMO
In this Perspective we present a comprehensive study of the multiple reaction products of metal-free porphyrins (2H-Ps) in contact with the rutile TiO2(110) surface. In the absence of peripheral functionalization with specific linkers, the porphyrin adsorption is driven by the coordination of the two pyrrolic nitrogen atoms of the macrocycle to two consecutive oxygen atoms of the protruding Obr rows via hydrogen bonding. This chemical interaction favours the iminic nitrogen uptake of hydrogen from near surface layers at room temperature, thus yielding a stable acidic porphyrin (4H-P). In addition, a mild annealing (â¼100 °C) triggers the incorporation of a Ti atom in the porphyrin macrocycle (self-metalation). We recently demonstrated that such a low temperature reaction is driven by a Lewis base iminic attack, which lowers the energy barriers for the outdiffusion of Ti interstitial atoms (Tiint) [Kremer et al., Appl. Surf. Sci., 2021, 564, 150403]. In the monolayer (ML) range, the porphyrin adsorption site, corresponding to a TiO-TPP configuration, is extremely stable and tetraphenyl-porphyrins (TPPs) may even undergo conformational distortion (flattening) by partial cyclo-dehydrogenation, while remaining anchored to the O rows up to 450 °C [Lovat et al., Nanoscale, 2017, 9, 11694]. Here we show that, upon self-metalation, isolated molecules at low coverage may jump atop the rows of five-fold coordinated Ti atoms (Ti5f). This configuration is associated with the formation of a new coordination complex, Ti-O-Ti5f, as determined by comparison with the deposition of pristine titanyl-porphyrin (TiO-TPP) molecules. The newly established Ti-O-Ti5f anchoring configuration is found to be stable also beyond the TPP flattening reaction. The anchoring of TiO-TPP to the Ti5f rows is, however, susceptible to the cross-talk between phenyls of adjacent molecules, which ultimately drives the TiO-TPP temperature evolution in the ML range along the same pathway followed by 2H-TPP.
RESUMO
Semiconducting O-doped polycyclic aromatic hydrocarbons constitute a class of molecules whose optoelectronic properties can be tailored by acting on the π-extension of the carbon-based frameworks and on the oxygen linkages. Although much is known about their photophysical and electrochemical properties in solution, their self-assembly interfacial behavior on solid substrates has remained unexplored so far. In this paper, we have focused our attention on the on-surface self-assembly of O-doped bi-perylene derivatives. Their ability to assemble in ordered networks on Cu(111) single-crystalline surfaces allowed a combination of structural, morphological, and spectroscopic studies. In particular, the exploitation of the orbital mapping methodology based on angle-resolved photoemission spectroscopy, with the support of scanning tunneling microscopy and low-energy electron diffraction, allowed the identification of both the electronic structure of the adsorbates and their geometric arrangement. Our multi-technique experimental investigation includes the structure determination from powder X-ray diffraction data for a specific compound and demonstrates that the electronic structure of such large molecular self-assembled networks can be studied using the reconstruction methods of molecular orbitals from photoemission data even in the presence of segregated chiral domains.
RESUMO
The quest for surfaces able to interface cells and modulate their functionality has raised, in recent years, the development of biomaterials endowed with nanocues capable of mimicking the natural extracellular matrix (ECM), especially for tissue regeneration purposes. In this context, carbon nanotubes (CNTs) are optimal candidates, showing dimensions and a morphology comparable to fibril ECM constituents. Moreover, when immobilized onto surfaces, they demonstrated outstanding cytocompatibility and ease of chemical modification with ad hoc functionalities. In this study, we interface porcine aortic valve interstitial cells (pVICs) to multi-walled carbon nanotube (MWNT) carpets, investigating the impact of surface nano-morphology on cell properties. The results obtained indicate that CNTs significantly affect cell behavior in terms of cell morphology, cytoskeleton organization, and mechanical properties. We discovered that CNT carpets appear to maintain interfaced pVICs in a sort of "quiescent state", hampering cell activation into a myofibroblasts-like phenotype morphology, a cellular evolution prodromal to Calcific Aortic Valve Disease (CAVD) and characterized by valve interstitial tissue stiffening. We found that this phenomenon is linked to CNTs' ability to alter cell tensional homeostasis, interacting with cell plasma membranes, stabilizing focal adhesions and enabling a better strain distribution within cells. Our discovery contributes to shedding new light on the ECM contribution in modulating cell behavior and will open the door to new criteria for designing nanostructured scaffolds to drive cell functionality for tissue engineering applications.
RESUMO
The presence of non-hexagonal rings in the honeycomb carbon arrangement of graphene produces rippled graphene layers with valuable chemical and physical properties. In principle, a bottom-up approach to introducing distortion from planarity of a graphene sheet can be achieved by careful insertion of curved polyaromatic hydrocarbons during the growth of the lattice. Corannulene, the archetype of such non-planar polyaromatic hydrocarbons, can act as an ideal wrinkling motif in 2D carbon nanostructures. Herein we report an electrochemical bottom-up method to obtain egg-box shaped nanographene structures through a polycondensation of corannulene that produces a new conducting layered material. Characterization of this new polymeric material by electrochemistry, spectroscopy, electron microscopy (SEM and TEM), scanning probe microscopy, and laser desorption-ionization time of flight mass spectrometry provides strong evidence that the anodic polymerization of corannulene, combined with electrochemically induced oxidative cyclodehydrogenations (Scholl reactions), leads to polycorannulene with a wavy graphene-like structure.
RESUMO
Self-metalation is a promising route to include a single metal atom in a tetrapyrrolic macrocycle in organic frameworks supported by metal surfaces. The molecule-surface interaction may provide the charge transfer and the geometric distortion of the molecular plane necessary for metal inclusion. However, at a metal surface the presence of an activation barrier can represent an obstacle that cannot be compensated by a higher substrate temperature without affecting the layer integrity. The formation of the intermediate state can be facilitated in some cases by oxygen pre-adsorption at the supporting metal surface, like in the case of 2H-TPP/Pd(100). In such cases, the activation barrier can be overcome by mild annealing, yielding the formation of desorbing products and of the metalated tetrapyrrole. We show here that the self-metalation of 2H-TPP at the Pd(100) surface can be promoted already at room temperature by the presence of an oxygen gas phase at close-to-ambient conditions via an Eley-Rideal mechanism.
RESUMO
The water-splitting photo-catalysis by carbon nitride heterocycles has been the subject of recent theoretical investigations, revealing a proton-coupled electron transfer (PCET) reaction from the H-bonded water molecule to the CN-heterocycle. In this context, a detailed characterization of the water-catalyst binding configuration becomes mandatory in order to validate and possibly improve the theoretical modeling. To this aim, we built a well-defined surface-supported water/catalyst interface by adsorbing water under ultra-high vacuum (UHV) conditions on a monolayer of melamine grown on the Cu(111) surface. By combining X-ray photoemission (XPS) and absorption (NEXAFS) spectroscopy we observed that melamine adsorbed onto copper is strongly tilted off the surface, with one amino group dangling to the vacuum side. The binding energy (BE) of the corresponding N 1s component is significantly higher compared to other N 1s contributions and displays a clear shift to lower BE as water is adsorbed. This finding along with density functional theory (DFT) results reveals that two adjacent melamine molecules concurrently work for stabilizing the H-bonded water-catalyst complex: one melamine acting as a H-donor via the amino-N (NHâ¯OHH) and another one as a H-acceptor via the triazine-N (C[double bond, length as m-dash]Nâ¯HOH).
RESUMO
Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by Transmission Electron Microscopy (TEM), Raman Spectroscopy, and high resolution x-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni nanoparticles (NPs), the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within 20 months of observation.
RESUMO
The increasing engineering of carbon-based nanomaterials as components of neuroregenerative interfaces is motivated by their dimensional compatibility with subcellular compartments of excitable cells, such as axons and synapses. In neuroscience applications, carbon nanotubes (CNTs) have been used to improve electronic device performance by exploiting their physical properties. Besides, when manufactured to interface neuronal networks formation in vitro, CNT carpets have shown their unique ability to potentiate synaptic networks formation and function. Due to the low optical transparency of CNTs films, further developments of these materials in neural prosthesis fabrication or in implementing interfacing devices to be paired with in vivo imaging or in vitro optogenetic approaches are currently limited. In the present work, we exploit a new method to fabricate CNTs by growing them on a fused silica surface, which results in a transparent CNT-based substrate (tCNTs). We show that tCNTs favor dissociated primary neurons network formation and function, an effect comparable to the one observed for their dark counterparts. We further adopt tCNTs to support the growth of intact or lesioned entorhinal-hippocampal complex organotypic cultures (EHCs). Through immunocytochemistry and electrophysiological field potential recordings, we show here that tCNTs platforms are suitable substrates for the growth of EHCs and we unmask their ability to significantly increase the signal synchronization and fiber sprouting between the cortex and the hippocampus with respect to Controls. tCNTs transparency and ability to enhance recovery of lesioned brain cultures, make them optimal candidates to implement implantable devices in regenerative medicine and tissue engineering.
Assuntos
Giro Denteado/citologia , Giro Denteado/fisiologia , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Nanotubos de Carbono , Animais , Animais Recém-Nascidos , Microscopia Eletrônica de Varredura/métodos , Técnicas de Cultura de Órgãos/métodos , Ratos , Ratos WistarRESUMO
Since their first appearance, organic-inorganic perovskite absorbers have been capturing the attention of the scientific community. While high efficiency devices highlight the importance of band level alignment, very little is known on the origin of the strong n-doping character observed in the perovskite. Here, by means of a highly accurate photoemission study, we shed light on the energy alignment in perovskite-based devices. Our results suggest that the interaction with the substrate may be the driver for the observed doping in the perovskite samples.
RESUMO
An array of five sensors, based on carbon nanotubes (CNT) functionalized with nanoparticles of Au, TiO2, ITO, and Si has been fabricated and exposed to a selected series of target gas molecules (NH3, NO2, H2S, H2O, benzene, ethanol, acetone, 2-propanol, sodium hypochlorite, and several combinations of two gases). The results of principal component analysis (PCA) of the experimental data show that this array of sensors is able to detect different target gas and to discriminate each molecule in the 2D PCA parameters space. In particular, the possibility to include in the array a humidity sensor significantly increases the capability to discriminate the response to volatile organic compounds (VOCs), even though VOCs usually react with CNTs less than NO2 or NH3. This leads to an improvement in selectivity that could meet the requirements for gas detection applications in the field of environmental monitoring and breathomics, where sensors are exposed to a variety of different molecules and where the humidity can severely affect the overall response of the sensor. Finally, we demonstrate that the ability to test multiple sensors simultaneously can reveal a specific sensor sensitivity, addressing the best functionalization choice to improve the response of new sensors based on decorated CNT layers. In particular, our study shows the better capability of the ITO-decorated sensor to detect H2S and benzene.
RESUMO
Carbon nanotube (CNT)-modified surfaces unequivocally demonstrate their biocompatibility and ability to boost the electrical activity of neuronal cells cultured on them. Reasons for this effect are still under debate. However, the intimate contact at the membrane level between these thready nanostructures and cells, in combination with their unique electrical properties, seems to play an important role. The entire existing literature exploiting the effect of CNTs on modulating cellular behavior deals with cell cultures grown on purified multiwalled carbon nanotubes (MWNTs) deposited on a supporting surface via drop-casting or mechanical entrapment. Here, for the first time, it is demonstrated that CNTs directly grown on a supporting silicon surface by a chemical vapor deposition (CVD)-assisted technique have the same effect. It is shown that primary neuronal cells developed above a carpet of CVD CNTs form a healthy and functional network. The resulting neuronal network shows increased electrical activity when compared to a similar network developed on a control glass surface. The low cost and high versatility of the here presented CVD-based synthesis process, together with the possibility to create on supporting substrate patterns of any arbitrary shape of CNTs, open up new opportunities for brain-machine interfaces or neuroprosthetic devices.
Assuntos
Interfaces Cérebro-Computador , Hipocampo/metabolismo , Nanotubos de Carbono , Rede Nervosa/metabolismo , Neurônios/metabolismo , Animais , Hipocampo/citologia , Rede Nervosa/citologia , Neurônios/citologia , RatosRESUMO
The original version of this Article contained an error in the spelling of the author Claus Michael Schneider, which was incorrectly given as Claus Michael Schneidery. This has now been corrected in both the PDF and HTML versions of the Article.
RESUMO
The molecule-substrate interaction plays a key role in charge injection organic-based devices. Charge transfer at molecule-metal interfaces strongly affects the overall physical and magnetic properties of the system, and ultimately the device performance. Here, we report theoretical and experimental evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules adsorbed on Cu(100). The exceptional charge transfer leads to filling of the higher unoccupied orbitals up to LUMO+3. As a consequence of this strong interaction with the substrate, the porphyrin's macrocycle sits very close to the surface, forcing the phenyl ligands to bend upwards. Due to this adsorption configuration, scanning tunneling microscopy cannot reliably probe the states related to the macrocycle. We demonstrate that photoemission tomography can instead access the Ni-TPP macrocycle electronic states and determine the reordering and filling of the LUMOs upon adsorption, thereby confirming the remarkable charge transfer predicted by density functional theory calculations.Charge transfer at molecule-metal interfaces affects the overall physical and magnetic properties of organic-based devices, and ultimately their performance. Here, the authors report evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules adsorbed on copper.
RESUMO
Herein the formation of water molecules in the intermediate step of the redox reaction of porphyrins self-metalation on O/Cu(111) is demonstrated. Photoemission measurements show that the temperature on which porphyrins pick-up a substrate metal atom on O/Cu(111) is reduced by about 185±15â K with respect to the pure Cu(111). DFT calculations clearly indicate that the formation of a water molecule is less expensive than the formation of H2 on the O/Cu(111) substrate and, in some cases, it can be also exothermic.
RESUMO
Multi-walled carbon nanotubes (CNTs) have been grown in situ on a SiO 2 substrate and used as gas sensors. For this purpose, the voltage response of the CNTs as a function of time has been used to detect H 2 and CO 2 at various concentrations by supplying a constant current to the system. The analysis of both adsorptions and desorptions curves has revealed two different exponential behaviours for each curve. The study of the characteristic times, obtained from the fitting of the data, has allowed us to identify separately chemisorption and physisorption processes on the CNTs.
RESUMO
Topological insulators are a promising class of materials for applications in the field of spintronics. New perspectives in this field can arise from interfacing metal-organic molecules with the topological insulator spin-momentum locked surface states, which can be perturbed enhancing or suppressing spintronics-relevant properties such as spin coherence. Here we show results from an angle-resolved photemission spectroscopy (ARPES) and scanning tunnelling microscopy (STM) study of the prototypical cobalt phthalocyanine (CoPc)/Bi2Se3 interface. We demonstrate that that the hybrid interface can act on the topological protection of the surface and bury the Dirac cone below the first quintuple layer.
RESUMO
A novel carbon-based nanostructured material, which includes carbon nanotubes (CNTs), porous carbon, nanostructured ZnO and Fe nanoparticles, has been synthetized using catalytic chemical vapour deposition (CVD) of acetylene on vertically aligned ZnO nanorods (NRs). The deposition of Fe before the CVD process induces the presence of dense CNTs in addition to the variety of nanostructures already observed on the process done on the bare NRs, which range from amorphous graphitic carbon up to nanostructured dendritic carbon films, where the NRs are partially or completely etched. The combination of scanning electron microscopy and in situ photoemission spectroscopy indicate that Fe enhances the ZnO etching, and that the CNT synthesis is favoured by the reduced Fe mobility due to the strong interaction between Fe and the NRs, and to the presence of many defects, formed during the CVD process. Our results demonstrate that the resulting new hybrid shows a higher sensitivity to ammonia gas at ambient conditions (â¼60 ppb) than the carbon nanostructures obtained without the aid of Fe, the bare ZnO NRs, or other one-dimensional carbon nanostructures, making this system of potential interest for environmental ammonia monitoring. Finally, in view of the possible application in nanoscale optoelectronics, the photoexcited carrier behaviour in these hybrid systems has been characterized by time-resolved reflectivity measurements.
RESUMO
Carbon nanotubes are a natural choice as gas sensor components given their high surface to volume ratio, electronic properties, and capability to mediate chemical reactions. However, a realistic assessment of the interaction of the tube wall and the adsorption processes during gas phase reactions has always been elusive. Making use of ultraclean single-walled carbon nanotubes, we have followed the adsorption kinetics of NO2 and found a physisorption mechanism. Additionally, the adsorption reaction directly depends on the metallic character of the samples. Franck-Condon satellites, hitherto undetected in nanotube-NOx systems, were resolved in the N 1s X-ray absorption signal, revealing a weak chemisorption, which is intrinsically related to NO dimer molecules. This has allowed us to identify that an additional signal observed in the higher binding energy region of the core level C 1s photoemission signal is due to the C â O species of ketene groups formed as reaction byproducts . This has been supported by density functional theory calculations. These results pave the way toward the optimization of nanotube-based sensors with tailored sensitivity and selectivity to different species at room temperature.
RESUMO
The possibility of using novel architectures based on carbon nanotubes (CNTs) for a realistic monitoring of the air quality in an urban environment requires the capability to monitor concentrations of polluting gases in the low-ppb range. This limit has been so far virtually neglected, as most of the testing of new ammonia gas sensor devices based on CNTs is carried out above the ppm limit. In this paper, we present single-wall carbon nanotube (SWCNT) chemiresistor gas sensors operating at room temperature, displaying an enhanced sensitivity to NH3. Ammonia concentrations in air as low as 20 ppb have been measured, and a detection limit of 3 ppb is demonstrated, which is in the full range of the average NH3 concentration in an urban environment and well below the sensitivities so far reported for pristine, non-functionalized SWCNTs operating at room temperature. In addition to careful preparation of the SWCNT layers, through sonication and dielectrophoresis that improved the quality of the CNT bundle layers, the low-ppb limit is also attained by revealing and properly tracking a fast dynamics channel in the desorption process of the polluting gas molecules.
RESUMO
Solar-to-fuel energy conversion relies on the invention of efficient catalysts enabling water oxidation through low-energy pathways. Our aerobic life is based on this strategy, mastered by the natural Photosystem II enzyme, using a tetranuclear Mn-oxo complex as oxygen evolving center. Within artificial devices, water can be oxidized efficiently on tailored metal-oxide surfaces such as RuO2. The quest for catalyst optimization in vitro is plagued by the elusive description of the active sites on bulk oxides. Although molecular mimics of the natural catalyst have been proposed, they generally suffer from oxidative degradation under multiturnover regime. Here we investigate a nano-sized Ru4-polyoxometalate standing as an efficient artificial catalyst featuring a totally inorganic molecular structure with enhanced stability. Experimental and computational evidence reported herein indicates that this is a unique molecular species mimicking oxygenic RuO2 surfaces. Ru4-polyoxometalate bridges the gap between homogeneous and heterogeneous water oxidation catalysis, leading to a breakthrough system. Density functional theory calculations show that the catalytic efficiency stems from the optimal distribution of the free energy cost to form reaction intermediates, in analogy with metal-oxide catalysts, thus providing a unifying picture for the two realms of water oxidation catalysis. These correlations among the mechanism of reaction, thermodynamic efficiency, and local structure of the active sites provide the key guidelines for the rational design of superior molecular catalysts and composite materials designed with a bottom-up approach and atomic control.