Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 14(15): e1703963, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29479814

RESUMO

Although cubic rock salt-CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende-CoO phase is antiferromagnetic with a 3rd type structure in a face-centered cubic lattice and a Néel temperature of TN (zinc-blende) ≈225 K. Wurtzite-CoO also presents an antiferromagnetic order, TN (wurtzite) ≈109 K, although much more complex, with a 2nd type order along the c-axis but an incommensurate order along the y-axis. Importantly, the overall magnetic properties are overwhelmed by the uncompensated spins, which confer the system a ferromagnetic-like behavior even at room temperature.

2.
Nanoscale ; 7(7): 3002-15, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25600147

RESUMO

The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides.

3.
Nanoscale ; 5(12): 5561-7, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23681182

RESUMO

The controlled filling of the pores of highly ordered mesoporous antiferromagnetic Co3O4 replicas with ferrimagnetic FexCo3-xO4 nanolayers is presented as a proof-of-concept toward the integration of nanosized units in highly ordered, heterostructured 3D architectures. Antiferromagnetic (AFM) Co3O4 mesostructures are obtained as negative replicas of KIT-6 silica templates, which are subsequently coated with ferrimagnetic (FiM) FexCo3-xO4 nanolayers. The tuneable magnetic properties, with a large exchange bias and coercivity, arising from the FiM/AFM interface coupling, confirm the microstructure of this novel two-phase core-shell mesoporous material. The present work demonstrates that ordered functional mesoporous 3D-materials can be successfully infiltrated with other compounds exhibiting additional functionalities yielding highly tuneable, versatile, non-siliceous based nanocomposites.

4.
J Am Chem Soc ; 132(27): 9398-407, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20568759

RESUMO

The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (gamma-Mn(2)O(3) or Mn(3)O(4)) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predominantly gamma-Mn(2)O(3) shell, larger ones have increasing amounts of Mn(3)O(4). A considerable enhancement of the Néel temperature, T(N), and the magnetic anisotropy of the MnO core for decreasing core sizes has been observed. The size reduction also leads to other phenomena such as persistent magnetic moment in MnO up to high temperatures and an unusual temperature behavior of the magnetic domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA