Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 7(10): 4757-4762, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34587440

RESUMO

Sorbitol, mannitol, xylitol, and erythritol, four readily available sugar alcohols with poor or no membrane permeability, are converted into their corresponding dipropionates by acylating their primary hydroxyl groups. With enhanced membrane permeability, these diesters are expected to permeate the cell membranes and, upon their hydrolysis, release the corresponding sugar alcohols inside the cells. NIH-3T3 cells incubated with these diesters before being frozen at -80 °C exhibited considerably higher total recovery over those incubated with the free sugar alcohols or media only. Among the four diesters, those of sorbitol, especially mannitol, showed cryoprotective effects comparable to that shown by 5% DMSO. This work has demonstrated the feasibility of converting readily available, naturally occurring compounds into membrane-permeable derivatives that serve as water-soluble, nontoxic alternatives to DMSO.

2.
J Hazard Mater ; 418: 126281, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111748

RESUMO

Despite the progress in explanation of mixture toxicity of rare earth elements (REEs), a large knowledge gap still exists in interpreting their mixed effects from a dynamic perspective. Here, we investigated the effects of La-Ce mixtures in Enchytraeus crypticus at different exposure times. The single and mixture toxicity of La and Ce increased with time, as reflected by the reduced LC50/MT50 values. With concentration addition as the reference model, the interactions between La and Ce were quantified by MIXTOX modelling tool, showing a time-dependent pattern with antagonistic effect after 1 and 2 d but additive effects afterwards. The dynamic accumulation and toxicity of La/Ce in organisms exposed to REE mixtures was fitted using a process-based toxicokinetic and toxicodynamic (TK-TD) model to unravel how the elements interacted. Generally, the estimated uptake, elimination, and damage rate constants of La/Ce declined with increasing level of each other, suggesting inhibited uptake and subsequently reduced toxicity of La/Ce due to competition effect. The interplay of La and Ce in TK and TD processes seemed responsible for the observed antagonism. Our study showed that mixture toxicity and interaction of REEs are time-dependent processes and application of TK-TD model may provide more insight into this dynamic effect.


Assuntos
Metais Terras Raras , Oligoquetos , Animais , Metais Terras Raras/toxicidade , Toxicocinética
3.
Org Biomol Chem ; 19(19): 4359-4363, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33908557

RESUMO

A series of unnatural tripeptides, each consisting of two aromatic γ-amino acid residues and an ϖ-amino acid residue, are designed to probe their folding into hairpin conformations. The ϖ-amino acid residues, with aliphatic or aromatic spacers of different sizes, serve as the loop of the hairpins. Studies based on one-dimensional (1D) 1H NMR performed at different concentrations, solvent polarity, and temperature, along with 2D-NMR studies, demonstrated that the doubly H-bonded aromatic γ-amino acid residues play important roles in driving these tripeptides into the hairpin conformation. The loop based on 5-aminovaleric acid, which offers a four-carbon (CH2)4 spacer, enhanced the stability of the corresponding hairpin, while loops having a shorter, a longer and a more rigid spacer disfavored the formation of the hairpins. Results from computational studies are in good agreement with the experimental observations. Furthermore, the crystal structure of peptide 1b revealed the expected hairpin conformation in the solid state. This turn motif, which contains H-bonded aromatic γ-amino acid residues as the core unit and an ϖ-amino acid residue serving as the loop, provides a new platform that can be used to obtain a variety of turn conformations by incorporating diverse amino acids into the loops.

4.
J Hazard Mater ; 416: 125761, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33819642

RESUMO

Essential elements can affect the bioavailability, uptake, and toxicity of metals. However, hardly any research has focused on the roles of essential elements on the toxicity of rare earth metals. Here we examined how P and Fe modified the individual and binary toxicity of Y and Ce to Triticum aestivum, respectively. Standard root elongation tests were used to quantify the toxicity of both single and binary mixtures at three levels of P addition (1, 5, and 10 µM) and Fe addition (0.1, 1, and 5 mM). Our results showed that both P and Fe can alleviate individual toxicity of Y or Ce irrespective of the dose indicators as suggested by the enhanced EC50 values. Both P and Fe might mitigate Y/Ce toxicity by limiting Y/Ce uptake into roots and improving nutritional status of wheats, whereas P can also decrease free Y/Ce ion activities in the exposure media. As for the mixture toxicity of Y and Ce, only improved P, but not Fe can exhibit approximately additive mixture toxicity, which can be adequately predicted by the simple Concentration Addition model. Our results suggested the important roles of P and Fe in assessing Y and Ce toxicity accurately.


Assuntos
Cério , Metais Terras Raras , Cério/toxicidade , Metais , Triticum , Ítrio/toxicidade
5.
Biochemistry ; 60(11): 886-897, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33689296

RESUMO

Biological motors, ubiquitous in living systems, convert chemical energy into different kinds of mechanical motions critical to cellular functions. Gene product 16 (gp16) in bacteriophage ϕ29 is among the most powerful biomotors known, which adopts a multisubunit ring-shaped structure and hydrolyzes ATP to package double-stranded DNA (dsDNA) into a preformed procapsid. Here we report the crystal structure of the C-terminal domain of gp16 (gp16-CTD). Structure-based alignment and molecular dynamics simulations revealed an essential binding surface of gp16-CTD for prohead RNA, a unique component of the motor complex. Furthermore, our simulations highlighted a dynamic interplay between the N-terminal domain and the CTD of gp16, which may play a role in driving movement of DNA into the procapsid. Lastly, we assembled an atomic structural model of the complete ϕ29 dsDNA packaging motor complex by integrating structural and experimental data from multiple sources. Collectively, our findings provided a refined inchworm-revolution model for dsDNA translocation in bacteriophage ϕ29 and suggested how the individual domains of gp16 work together to power such translocation.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Empacotamento do DNA , Bacteriófagos/fisiologia , DNA Viral/metabolismo , RNA Viral/metabolismo , Montagem de Vírus
6.
Front Chem ; 8: 530083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33134269

RESUMO

Factors responsible for the persistent adoption of hairpin conformations by hybrid oligopeptides, each having a central ß/α dipeptide segment flanked by aromatic γ-amino acid (γAr) residues, are probed. Our recent studies revealed that tetrapeptide 1 and 2, having central dipeptide segments consisting of ß-alanine (ß-Ala) and glycine (Gly), and L-ß-homophenylalanine (L-ß-homoPhe) and Gly residues, respectively, that are flanked by γAr residues, fold into well-defined, expanded ß-turns with doubly H-bonded γAr residues. Replacing the γAr residues of 1 and 2 with L-Val and L-Leu residues results in tetrapetides 1 ' and 2 ' that fail to fold into defined conformations, which confirms the decisive role played by the H-bonded γAr residues in the promoting folding of 1 and 2. Attaching L-Val and L-Leu residues to the termini of 1 affords hexapeptide 1a. With an additional H-bond between its L-Val and L-Leu residues, peptide 1a folds into a hairpin with higher stability than that of 1, indicating that the expanded ß-turn can nucleate and stabilize ß-hairpin with longer ß-strands. Attaching L-Val and L-Leu residues to the termini of 2 affords hexapeptide 2a. Substituting the L-ß-homoPhe residue of 2a with a D-ß-homoPhe residue gives hexapeptide 2b. Surprisingly, hexapeptide 2a fold into a hairpin showing the similar stability as those of tetrapeptides 1 and 2. Hexapeptide 2b, with its combination of a D-ß-homoPhe residue and the L-Val/L-Leu pair, fold into a hairpin that is significantly more stable than the other hybrid peptides, demonstrating that a combination of hetero-chirality between the ß-amino acid residue of the dipeptide loop and the α-amino acid residues of the ß-strands enhances the stability of the resultant ß-hairpin.

7.
J Food Sci ; 85(12): 4215-4224, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33190270

RESUMO

The multiscale structural, physicochemical, and digestible properties of potato starch before and after heat-moisture treatment were investigated, and further compared between repeated heat-moisture treatment (RHMT) and continuous heat-moisture treatment (CHMT). After heat-moisture treatment, there appeared partial disruption and pits on the starch granules, and the birefringence edges of HMT starch particles became blurred. Besides, the molecular weight of samples conspicuously decreased after two kinds of treatments. The crystal type of HMT starches transformed from B-type to C-type according to X-ray analysis. A decrease in the solubility and swelling power in high temperatures were identified. The pasting temperature, the gelatinization transition temperature (To , Tp , Tc ), and the slowly digestible starch (SDS) content of HMT starches were significantly higher than native potato starch, while the peak viscosity, the trough viscosity, the final viscosity, the breakdown, and the gelatinization enthalpy (ΔH) of RHMT and CHMT potato starches decreased compared to the native. RHMT potato starches displayed significantly higher relative crystallinity degree and gelatinization transition temperatures. The cooling process of RHMT in which the linkage between the recombinant amylose/amylopectin was enhanced compared with CHMT, which contributed to that RHMT potato starches exhibited greater advantages in practical applications. PRACTICAL APPLICATION: The described RHMT and CHMT starches provide new ideas for the study of modified starch. Furthermore, this study revealed the mechanism of heat-moisture processing provided some instructions to the application of RHMT potato starch.


Assuntos
Solanum tuberosum/química , Amido/química , Amilopectina/química , Amilose/química , Gelatina/química , Temperatura Alta , Estrutura Molecular , Solubilidade , Temperatura , Termodinâmica , Viscosidade
8.
Org Lett ; 22(19): 7496-7501, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32959659

RESUMO

Oligomers of 5-amino-N-acylanthranilic acid, previously unknown aromatic oligoamides that cannot be obtained with known amide coupling methods, are synthesized based on a new, highly efficient amide-bond formation strategy that takes advantage of the ring-opening of benzoxazinone derivatives. These oligoamides offer multiple backbone NH groups as H-bond donors which, in the presence of iodide or chloride ion, are convergently arranged and H-bonded, which enforces a folded, crescent conformation. These aromatic oligoamides provide a versatile platform based on which anion-dependent foldamers, or anion binders with tunable affinity and specificity, are being constructed.

9.
Ecotoxicol Environ Saf ; 205: 111346, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977285

RESUMO

It is a daunting challenge to predict toxicity and accumulation of rare earth metals (REMs) in different exposure scenarios (e.g., varying water chemistry and metal combinations). Herein, we investigated the toxicity and uptake of La and Ce in the presence of various levels of Ca, Mg, Na, K, and at different pH values, as well as the combined effects of La and Ce in wheat Triticum aestivum. Major cations (Ca2+ and Mg2+) significantly mitigated the toxicity and accumulation of La3+/Ce3+. Toxicity and uptake of La, Ce, and La-Ce mixtures could be well quantified by the multi-metal biotic ligand model (BLM) and by the Langmuir-type uptake model with the consideration of the competitive effects of Ca2+ and Mg2+, with more than 85.1% of variations explained. The derived binding constants of Ca, Mg, La, and Ce to wheat root were respectively 3.87, 3.59, 6.97, and 6.48 on the basis of toxicity data, and 3.23, 2.84, 6.07, and 5.27 on the basis of uptake data. The use of the alternative WHAM-Ftox approach, requiring fewer model parameters than the BLM but with similar Akaike information criterion (AIC) values, successfully predicted the toxicity and accumulation of La/Ce as well as toxicity of La-Ce mixtures, with at least 76.4% of variations explained. However, caution should be taken when using this approach to explain the uptake of La-Ce mixtures. Our results provided promising tools for delineating REMs toxicity/uptake in the presence of other toxicity-modifying factors or in mixture scenarios.


Assuntos
Metais Terras Raras/toxicidade , Triticum/fisiologia , Disponibilidade Biológica , Cátions/farmacologia , Ligantes , Metais/farmacologia , Modelos Biológicos , Sódio , Triticum/efeitos dos fármacos
10.
ChemSusChem ; 13(20): 5507-5515, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32757265

RESUMO

The catalytic conversion of biomass-derived furfural (FFA) into cyclopentanone (CPO) in aqueous solution is an important pathway to obtain sustainable resources. However, the conversion and selectivity under mild conditions are still unsatisfactory. In this study, a catalyst consisting of Ni-NiO heterojunction supported on TiO2 with optimized composition of anatase and rutile (Ni-NiO/TiO2 -Re450) is prepared by pyrolysis at 450 °C. With Ni-NiO/TiO2 -Re450, as catalyst, complete conversion of FFA and 87.4 % yield of CPO are achieved under mild reaction conditions (1 MPa, 140 °C, 6 h). 95.4 % FFA conversion is retained up to the fifth run, indicating the high stability of the catalyst. Multiple characterizations, control experiments, and theoretical calculations demonstrate that the good catalytic performance of Ni-NiO/TiO2 -Re450 can be attributed to a synergistic effect of the Ni-NiO heterojunction and the TiO2 support. This low-cost catalyst may expedite the catalytic upgrading and practical application of biomass-derived chemicals.

11.
Org Lett ; 22(17): 6938-6942, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32794403

RESUMO

Aromatic oligoamides adopting helical conformations are synthesized by coupling carboxyl-terminated basic units having two, four, and eight residues to amine-terminated oligomer precursors. Coupling yields show no noticeable reduction with the size of the basic units or the final product. One- and two-dimensional NMR spectroscopy and computational studies demonstrate the reliable helical folding of these oligomers. The X-ray structure of 16mer 7 reveals a compact, multiturn helix having a 9 Å inner pore.

12.
Int J Biol Macromol ; 163: 519-528, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32634515

RESUMO

The effects of continuous heat-moisture treatment (CHM) and repeated heat-moisture treatment (RHM) on multi-scale structure, physicochemical and digestibility properties of wheat A- and B-starch were investigated and compared. Both A- and B-starch granules maintained integrity after repeated and continuous modification. Changes in starch molecules induced the diversification of crystal structure and physicochemical properties. Crystal type of CHM and RHM starches maintained the original A-type while the crystallinity decreased after treatmnt. For wheat A-starch, the RS and RDS contents of RHM starches were obviously lower than native ones while the SDS content increased. Meanwhile, the RDS and SDS contents of treated B-starch were significantly higher than native ones but the RS content was lower. At the same conditions, B-starches exhibited a lower relative crystallinity, lower viscosity parameters, lower To, Tc, Tp and ΔH values than A-starches. In general, the repeated heat-moisture treated samples obtained superior characteristics than continuous treated ones, and the results of A- and B-starch varied greatly.


Assuntos
Temperatura Alta , Amido/química , Vapor , Triticum/química , Fenômenos Químicos , Hidrólise , Microscopia Confocal , Estrutura Molecular , Peso Molecular , Reologia , Solubilidade , Amido/ultraestrutura , Termodinâmica , Difração de Raios X
13.
Sci Total Environ ; 745: 140926, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32712499

RESUMO

Arsenic, copper, and zinc are common elements found in contaminated soils but little is known about their combined effects on plants when presented simultaneously. Here, we systematically investigated the phytotoxicity and uptake of binary and ternary mixtures of As, Cu, and Zn in a soil-plant system, using wheat (Triticum aestivum) as model species. The reference models of concentration addition (CA) and response addition (RA) coupled with different expressions of exposure (total concentrations in soil ([M]tot, mg/kg), free ion activities in soil solution ({M}, µM), and internal concentrations in plant roots ([M]int, µg/g)), were selected to assess the interaction mechanisms of binary mixtures of AsCu, AsZn, and CuZn. Metal(loid) interactions in soil were estimated in terms of solution-solid partitioning, root uptake, and root elongation effects. The partitioning of one metal(loid) between the soil solution and solid phase was most often inhibited by the presence of the other metal(loid). In terms of uptake, inhibitory effects and no effects were observed in the mixtures of As, Cu, and Zn, depending on the mixture combinations and the dose metrics used. In terms of toxicity, simple (antagonistic or synergistic) and more complex (dose ratio-dependent or dose level-dependent) interaction patterns of binary mixtures occurred, depending on the dose metrics selected and the reference models used. For ternary mixtures (As-Cu-Zn), nearly additive effects were observed irrespective of dose descriptors and reference models. The observed interactions in this study may help to understand and predict the joint toxicity of metal(loid)s mixtures in soil-plant system. Mixture interactions and bioavailability should be incorporated into the regulatory framework for accurate risk assessment of multimetal-contaminated sites.


Assuntos
Arsênio/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Cobre/toxicidade , Solo , Triticum/efeitos dos fármacos , Zinco/análise , Zinco/toxicidade
14.
Environ Res ; 188: 109736, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521305

RESUMO

The risk assessment of mixtures of rare earth elements (REEs) is hampered by a lack of fundamental understanding of their interactions in different soil types. Here, we assessed mixture interactions and toxicity to Triticum aestivum of Y and Ce in four different soils in relation to their bioavailability. Mixture toxicity was modelled by concentration addition (CA) and independent action (IA), in combination with different expressions of exposure: three equilibrium-based doses (total soil concentrations [M]tot, free ion activity in soil solution {M3+}, and the fraction (f) of metal ions bound to the biotic ligands (BLs)) and one kinetically controlled dose ([M]flux) metrics. Upon single exposure, REE toxicity was increasingly better described when using exposure expressions based on deepened understanding of their bioavailability: [M]flux > f > {M3+} > [M]tot. The mixture analyses based on [M]tot and {M3+} displayed deviations from additivity depending on the soil type. With the parameters derived from single exposures, the BLM approach gave better predictions of mixture toxicity (R2 ~ 0.70) than when using CA and IA based on either [M]tot or {M3+} (R2 < 0.64). About 30% of the variance in toxicity remained unexplained, challenging the view that the free metal ion is the main bioavailable form under the BLM framework based on thermodynamic equilibrium. Toxicity was best described when accounting for changes in the size of the labile metal pool by using a kinetically controlled dose metric (R2 ~ 0.80). This suggests that dynamic bioavailability analysis could provide a robust basis for modeling and reconciling the interplays and toxicity of metal mixtures in different soils.


Assuntos
Metais Terras Raras , Poluentes do Solo , Disponibilidade Biológica , Metais , Metais Terras Raras/análise , Metais Terras Raras/toxicidade , Solo , Poluentes do Solo/toxicidade , Triticum
15.
Sensors (Basel) ; 20(7)2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32260123

RESUMO

Recent advances in technology have empowered the widespread application of cyber-physical systems in manufacturing and fostered the Industry 4.0 paradigm. In the factories of the future, it is possible that all items, including operators, will be equipped with integrated communication and data processing capabilities. Operators can become part of the smart manufacturing systems, and this fosters a paradigm shift from independent automated and human activities to Vhuman-cyber-physical systems (HCPSs). In this context, a Healthy Operator 4.0 (HO4.0) concept was proposed, based on a systemic view of the Industrial Internet of Things (IIoT) and wearable technology. For the implementation of this relatively new concept, we constructed a unified architecture to support the integration of different enabling technologies. We designed an implementation model to facilitate the practical application of this concept in industry. The main enabling technologies of the model are introduced afterward. In addition, a prototype system was developed, and relevant experiments were conducted to demonstrate the feasibility of the proposed system architecture and the implementation framework, as well as some of the derived benefits.


Assuntos
Inteligência Artificial , Local de Trabalho , Humanos , Internet das Coisas , Dispositivos Eletrônicos Vestíveis
16.
Anal Chim Acta ; 1112: 8-15, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32334685

RESUMO

One of the most widely used approaches to characterize transmembrane ion transport through nanoscale synthetic or biological channels is a straightforward, liposome-based assay that monitors changes in ionic flux across the vesicle membrane using pH- or ion-sensitive dyes. However, failure to account for the precise experimental conditions, in particular the complete ionic composition on either side of the membrane and the inherent permeability of ions through the lipid bilayer itself, can prevent quantifications and lead to fundamentally incorrect conclusions. Here we present a quantitative model for this assay based on the Goldman-Hodgkin-Katz flux theory, which enables accurate measurements and identification of optimal conditions for the determination of ion channel permeability and selectivity. Based on our model, the detection sensitivity of channel permeability is improved by two orders of magnitude over the commonly used experimental conditions. Further, rather than obtaining qualitative preferences of ion selectivity as is typical, we determine quantitative values of these parameters under rigorously controlled conditions even when the experimental results would otherwise imply (without our model) incorrect behavior. We anticipate that this simply employed ultrasensitive assay will find wide application in the quantitative characterization of synthetic or biological ion channels.


Assuntos
Canais Iônicos/análise , Canais Iônicos/metabolismo , Transporte de Íons , Lipossomos/química , Modelos Biológicos
17.
J Cell Physiol ; 235(11): 8558-8570, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32329059

RESUMO

Ghrelin plays a neuroprotective role in the process of dopaminergic (DAergic) neurons degeneration in Parkinson's disease (PD). However, it still largely unknown whether ghrelin could affect the midbrain neural stem cells (mbNSCs) from which DAergic neurons are originated. In the present study, we observed that ghrelin enhanced mbNSCs proliferation, and promoted neuronal differentiation especially DAergic neuron differentiation both in vitro and ex vivo. The messenger RNA levels of Wnt1, Wnt3a, and glial cell line-derived neurotrophic factor were increased in response to the ghrelin treatment. Results showed that Wnt/ß-catenin pathway was relevant to this DAergic neuron differentiation induced by ghrelin. Our finding gave a new evidence that ghrelin may enable clinical therapies for PD by its neurogenesis role.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Grelina/metabolismo , Células-Tronco Neurais/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular/fisiologia , Mesencéfalo/metabolismo , Camundongos Knockout , Neurogênese/genética , Doença de Parkinson/metabolismo , Via de Sinalização Wnt/fisiologia
19.
J Am Chem Soc ; 142(6): 2915-2924, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31895977

RESUMO

Supramolecular chemistry in aqueous media is an area with great fundamental and practical significance. To examine the role of multiple noncovalent interactions in controlled assembling and binding behavior in water, the self-association of five water-soluble hexakis(m-phenylene ethynylene) (m-PE) macrocycles, along with the molecular recognition behavior of the resultant assemblies, is investigated with UV-vis, fluorescence, CD, and NMR spectroscopy, mass spectrometry, and computational studies. In contrast to their different extents of self-aggregation in organic solvents, all five macrocycles remain aggregated in water at concentrations down to the micromolar (µM) range. CD spectroscopy reveals that 1-F6 and 1-H6, two macrocycles carrying chiral side chains and capable of H-bonded self-association, assemble into tubular stacks. The tubular stacks serve as supramolecular hosts in water, as exemplified by the interaction of macrocycles 1-H6 and 2-H6 and guests G1 through G4, each having a rod-like oligo(p-phenylene ethynylene) (p-PE) segment flanked by two hydrophilic chains. Fluorescence and 1H NMR spectroscopy revealed the formation of kinetically stable, discrete assemblies upon mixing 2-H6 and a guest. The binding stoichiometry, determined with fluorescence, 1H NMR, and ESI-MS, reveals that the discrete assemblies are novel pseudorotaxanes, each containing a pair of identical guest molecules encased by a tubular stack. The two guest molecules define the number of macrocyclic molecules that comprise the host, which curbs the "infinite" stack growth, resulting in a tubular stack with a cylindrical pore tailoring the length of the p-PE segment of the bound guests. Each complex is stabilized by the action of multiple noncovalent forces including aromatic stacking, side-chain H-bonding, and van der Waals interactions. Thus, the interplay of multiple noncovalent forces aligns the molecules of macrocycles 1 and 2 into tubular stacks with cylindrical inner pores that, upon binding rod-like guests, lead to tight, discrete, and well-ordered tubular assemblies that are unprecedented in water.

20.
Org Lett ; 22(3): 1003-1007, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31944777

RESUMO

Hybrid tetrapeptides sharing a backbone with a central α/ß-dipeptide segment flanked by aromatic γ-amino acid residues fold into the same hairpin conformation with an expanded ß-turn. This hairpin/ß-turn motif is general for accommodating different α- and ß-amino acid residues. Replacing glycine with other α-amino acid residues has an insignificant influence on or slightly decreases the stabilities of the folded conformations; substituting ß-alanine with other ß-amino acid residues enhances the stabilities of the folded structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...