Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
PLoS Pathog ; 16(5): e1008484, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32357182

RESUMO

The flaviviruses pose serious threats to human health. Being a natural fusion of a methyltransferase (MTase) and an RNA-dependent RNA polymerase (RdRP), NS5 is the most conserved flavivirus protein and an important antiviral target. Previously reported NS5 structures represented by those from the Japanese encephalitis virus (JEV) and Dengue virus serotype 3 (DENV3) exhibit two apparently different global conformations, defining two sets of intra-molecular MTase-RdRP interactions. However, whether these NS5 conformations are conserved in flaviviruses and their specific functions remain elusive. Here we report two forms of DENV serotype 2 (DENV2) NS5 crystal structures representing two conformational states with defined analogies to the JEV-mode and DENV3-mode conformations, respectively, demonstrating the conservation of both conformation modes and providing clues for how different conformational states may be interconnected. Data from in vitro polymerase assays further demonstrate that perturbing the JEV-mode but not the DENV3-mode intra-molecular interactions inhibits catalysis only at initiation, while the cell-based virological analysis suggests that both modes of interactions are important for virus proliferation. Our work highlights the role of MTase as a unique intra-molecular initiation factor specifically only through the JEV-mode conformation, providing an example of conformation-based crosstalk between naturally fused protein functional modules.

3.
Sensors (Basel) ; 20(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168889

RESUMO

For multi-user uplink massive multiple input multiple output (MIMO) systems, minimum mean square error (MMSE) criterion-based linear signal detection algorithm achieves nearly optimal performance, on condition that the number of antennas at the base station is asymptotically large. However, it involves prohibitively high complexity in matrix inversion when the number of users is getting large. A low-complexity soft-output signal detection algorithm based on improved Kaczmarz method is proposed in this paper, which circumvents the matrix inversion operation and thus reduces the complexity by an order of magnitude. Meanwhile, an optimal relaxation parameter is introduced to further accelerate the convergence speed of the proposed algorithm and two approximate methods of calculating the log-likelihood ratios (LLRs) for channel decoding are obtained as well. Analysis and simulations verify that the proposed algorithm outperforms various typical low-complexity signal detection algorithms. The proposed algorithm converges rapidly and achieves its performance quite close to that of the MMSE algorithm with only a small number of iterations.

4.
iScience ; 23(3): 100908, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32114381

RESUMO

Ten-eleven translocation (Tet) enzymes are involved in DNA demethylation, important in regulating embryo development, stem cell pluripotency and tumorigenesis. Alterations of DNA methylation with age have been shown in various somatic cell types. We investigated whether Tet1 and Tet2 regulate aging. We showed that Tet1-deficient mice undergo a progressive reduction of spermatogonia stem cells and spermatogenesis and thus accelerated infertility with age. Tet1 deficiency decreases 5hmC levels in spermatogonia and downregulates a subset of genes important for cell cycle, germ cell differentiation, meiosis and reproduction, such as Ccna1 and Spo11, resulting in premature reproductive aging. Moreover, Tet1 and 5hmC both regulate signaling pathways key for stem cell development, including Wnt and PI3K-Akt, autophagy and stress response genes. In contrast, effect of Tet2 deficiency on male reproductive aging is minor. Hence, Tet1 maintains spermatogonia stem cells with age, revealing an important role of Tet1 in regulating stem cell aging.

5.
Brain Behav ; 10(4): e01573, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32073739

RESUMO

INTRODUCTION: Triggering receptor expressed on myeloid cells-like transcript 2 gene (TREML2) is a newly identified AD susceptibility gene. Its missense variant rs3747742-C substantially decreases AD risk in both Caucasians and Han Chinese, but the underlying mechanisms remain elusive. In the present study, to uncover the possible mechanisms by which TREML2 rs3747742-C reduces AD risk, we investigated the possible relation of this variant with AD-related brain structures using a cognitively normal elderly population from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. METHODS: In total, 158 cognitively normal elders from ADNI database with complete data for brain structures and TREML2 rs3747742 genotype were included in this study. The association of TREML2 rs3747742 genotype with the structures of three cerebral cortices (entorhinal cortex, middle temporal gyrus, and parahippocampal gyrus), two subcortical regions (amygdala and hippocampus), and three subfields of hippocampus (CA1, CA2 + CA3, and CA4 + dentate gyrus) was investigated. RESULTS: A significant difference was noted in the volume of right CA1 subfield among three genotypes of TREML2 rs3747742 (p = .0364). In the multivariate analysis, TREML2 rs3747742-C significantly increased right CA1 subfield volume after adjusting for age, gender, education years, APOE ε4 status, and intracranial volume under the recessive genetic model (Bonferroni corrected p = .003586). CONCLUSION: The present study provides the first evidence that TREML2 rs3747742-C carriers have larger volumes of hippocampal CA1 subfield in a cognitively normal elderly population. These findings imply that enhancement of brain reserve may contribute to the protection of TREML2 rs3747742-C in AD susceptibility.

6.
J Virol ; 94(6)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31896596

RESUMO

Mosquito-borne flaviviruses consist of a positive-sense genome RNA flanked by the untranslated regions (UTRs). There is a panel of highly complex RNA structures in the UTRs with critical functions. For instance, Xrn1-resistant RNAs (xrRNAs) halt Xrn1 digestion, leading to the production of subgenomic flaviviral RNA (sfRNA). Conserved short direct repeats (DRs), also known as conserved sequences (CS) and repeated conserved sequences (RCS), have been identified as being among the RNA elements locating downstream of xrRNAs, but their biological function remains unknown. In this study, we revealed that the specific DRs are involved in the production of specific sfRNAs in both mammalian and mosquito cells. Biochemical assays and structural remodeling demonstrate that the base pairings in the stem of these DRs control sfRNA formation by maintaining the binding affinity of the corresponding xrRNAs to Xrn1. On the basis of these findings, we propose that DRs functions like a bracket holding the Xrn1-xrRNA complex for sfRNA formation.IMPORTANCE Flaviviruses include many important human pathogens. The production of subgenomic flaviviral RNAs (sfRNAs) is important for viral pathogenicity as a common feature of flaviviruses. sfRNAs are formed through the incomplete degradation of viral genomic RNA by the cytoplasmic 5'-3' exoribonuclease Xrn1 halted at the Xrn1-resistant RNA (xrRNA) structures within the 3'-UTR. The 3'-UTRs of the flavivirus genome also contain distinct short direct repeats (DRs), such as RCS3, CS3, RCS2, and CS2. However, the biological functions of these ancient primary DR sequences remain largely unknown. Here, we found that DR sequences are involved in sfRNA formation and viral virulence and provide novel targets for the rational design of live attenuated flavivirus vaccine.

7.
J Mol Neurosci ; 70(1): 71-83, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31478134

RESUMO

The disruption of the blood-brain barrier (BBB) and the consequent brain edema are major contributors to the pathogenesis of cerebral ischemia/reperfusion injury. RhoA is generally thought to play a crucial role in the process of BBB disruption and participate in the signaling pathways emanating from TLR4. However, it remains unverified the regulatory role of TLR4 in the RhoA/ROCK pathway in cerebral I/R injury and its effects on the BBB as well. The present study probes into the protective effect of ANF on the BBB after cerebral I/R injury and the possible mechanisms. Focal cerebral ischemia was induced by 120 min of transient middle cerebral artery occlusion (MCAO). ANF (1, 2, 4 µg/kg) was achieved by intravenous injection after 120 min of MCAO followed by 1, 24, 48, and 72 h reperfusion. Evans blue extravasation, brain water content, RhoA activity, and the expressions of TLR4, ROCK1/2, p-MLC2, MMP-2/9, ZO-1, occludin, and claudin-5 protein in rat brain were evaluated 72 h after reperfusion. ANF could significantly reduce the Evans blue extravasation and water content in the ipsilateral hemisphere and obviously increase the occludin, claudin-5, and ZO-1 expression after cerebral I/R injury. Furthermore, cerebral I/R injury induced apparently increased expression of TLR4, RhoA-GTP, ROCK1/2, p-MLC2, and MMMP-2/9, which, however, could be remarkably alleviated by ANF intervention. Taken together, the TLR4/RhoA/ROCK signaling pathway is implicated in BBB breakdown after cerebral I/R injury, and ANF preserves BBB integrity, probably via inhibiting the TLR4/RhoA/ROCK signaling pathway.

8.
Clin Exp Med ; 20(1): 121-130, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31745677

RESUMO

To investigate the expression levels of fibroblast activation protein (FAP) in human osteosarcoma tissues and its possible correlations with clinical pathological characteristics of patients with osteosarcoma, and to explore the potential effects of FAP on progression and development of osteosarcoma. Immunohistochemistry (IHC) assay was initially performed to detect the expression levels of FAP in 66 tumor tissues and adjacent non-tumor tissues. Patients were sequentially divided into two groups based on different expression levels of FAP. The correlations between the expression levels of FAP and the clinical pathological characteristics were investigated, and the role of FAP in proliferation, migration, and invasion of osteosarcoma cells was assessed via colony formation, MTT, wound healing, and transwell assays, respectively. The possible effects of FAP on tumor growth and metastasis were evaluated in vivo. We further attempted to reveal the underlying mechanism of FAP involved in tumor growth through bioinformatics and IHC assays. High expression levels of FAP were noted in human osteosarcoma tissues. It also was unveiled that FAP was significantly associated with the tumor size (P = 0.005*) and clinical stage (P = 0.017*). Our data further confirmed that knockdown of FAP remarkably blocked proliferation, migration, and invasion of osteosarcoma cells in vitro, and suppressed tumor growth and metastasis in mice via AKT signaling pathway. The possible role of FAP in progression and development of osteosarcoma could be figured out. Our data may be helpful to develop a novel therapeutic target for the treatment of osteosarcoma.

9.
Nucleic Acids Res ; 48(1): 432-444, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31713614

RESUMO

SP_0782 from Streptococcus pneumoniae is a dimeric protein that potentially binds with single-stranded DNA (ssDNA) in a manner similar to human PC4, the prototype of PC4-like proteins, which plays roles in transcription and maintenance of genome stability. In a previous NMR study, SP_0782 exhibited an ssDNA-binding property different from YdbC, a prokaryotic PC4-like protein from Lactococcus lactis, but the underlying mechanism remains unclear. Here, we show that although SP_0782 adopts an overall fold similar to those of PC4 and YdbC, the ssDNA length occupied by SP_0782 is shorter than those occupied by PC4 and YdbC. SP_0782 exhibits varied binding patterns for different lengths of ssDNA, and tends to form large complexes with ssDNA in a potential high-density binding manner. The structures of SP_0782 complexed with different ssDNAs reveal that the varied binding patterns are associated with distinct capture of nucleotides in two major DNA-binding regions of SP_0782. Moreover, a comparison of known structures of PC4-like proteins complexed with ssDNA reveals a divergence in the binding interface between prokaryotic and eukaryotic PC4-like proteins. This study provides insights into the ssDNA-binding mechanism of PC4-like proteins, and benefits further study regarding the biological function of SP_0782, probably in DNA protection and natural transformation.

10.
Nucleic Acids Res ; 48(3): 1392-1405, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31863580

RESUMO

The enterovirus 71 (EV71) 3Dpol is an RNA-dependent RNA polymerase (RdRP) that plays the central role in the viral genome replication, and is an important target in antiviral studies. Here, we report a crystal structure of EV71 3Dpol elongation complex (EC) at 1.8 Å resolution. The structure reveals that the 5'-end guanosine of the downstream RNA template interacts with a fingers domain pocket, with the base sandwiched by H44 and R277 side chains through hydrophobic stacking interactions, and these interactions are still maintained after one in-crystal translocation event induced by nucleotide incorporation, implying that the pocket could regulate the functional properties of the polymerase by interacting with RNA. When mutated, residue R277 showed an impact on virus proliferation in virological studies with residue H44 having a synergistic effect. In vitro biochemical data further suggest that mutations at these two sites affect RNA binding, EC stability, but not polymerase catalytic rate (kcat) and apparent NTP affinity (KM,NTP). We propose that, although rarely captured by crystallography, similar surface pocket interaction with nucleobase may commonly exist in nucleic acid motor enzymes to facilitate their processivity. Potential applications in antiviral drug and vaccine development are also discussed.


Assuntos
Enterovirus Humano A/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Conformação Proteica , RNA Replicase/ultraestrutura , Antivirais/química , Sítios de Ligação , Cristalografia por Raios X , Enterovirus Humano A/química , Enterovirus Humano A/genética , Genoma Viral , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Nucleotídeos/química , RNA Replicase/química , RNA Viral/química , RNA Viral/ultraestrutura , Replicação Viral/genética
11.
Parasit Vectors ; 12(1): 568, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783771

RESUMO

BACKGROUND: Giardia duodenalis causes giardiasis, with diarrhea as the primary symptom. The trophozoite proliferation of this zoonotic parasite is mainly affected by telomerase, although the mechanism of telomerase regulation has not been thoroughly analyzed. METHODS: This study was performed to identify the telomerase RNA-binding domain (TRBD)-interacting protein in G. duodenalis and its regulation of telomerase. Interaction between TRBD and interacting proteins was verified via pulldown assays and co-immunoprecipitation (co-IP) techniques, and the subcellular localization of the protein interactions was determined in vivo via split SNAP-tag labeling. The hammerhead ribozyme was designed to deplete the mRNA of TRBD-interacting proteins. RESULTS: Using TRBD as bait, we identified zinc-finger domain (ZFD)-containing proteins and verified it via pulldown and co-IP experiments. Protein-protein interaction occurred in the nuclei of 293T cells and both nuclei of G. duodenalis. The hammerhead ribozyme depleted ZFD mRNA levels, which reduced the reproduction rate of G. duodenalis, telomerase activity and telomere length. CONCLUSIONS: Our findings suggest that ZFD may regulate telomere function in G. duodenalis nuclei.

12.
ACS Appl Mater Interfaces ; 11(49): 46327-46336, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718125

RESUMO

Oxygen reduction reaction (ORR) is a key microscopic process in many electrochemical applications of materials, where the requirements of their ORR performances may vary strikingly, for example, during the uses of MoS2 as an electrocatalyst and anticorrosion/lubricating coating in aqueous/humid environments, ORR should be activated and inhibited, respectively. To reveal a complete ORR profile of MoS2, using first-principles calculations, we examine the stabilities of various possible zero-dimensional point defects on the surface and one-dimensional edge defects and comprehensively explore the ORR activities on pristine MoS2 surface and those defects in acid/alkaline solutions. It is found that the ORRs on the pristine surface and surfaces with point defects always require large overpotentials (>1.0 V), indicating a defect-immune resistance of the planar MoS2 surface against the ORR. However, the ORR overpotentials on edge defects can reach as low as 0.66 V, corresponding to a relatively high activity close to that of the prototypical catalyst Pt (overpotential ∼0.45 V). Such contrasting ORR behaviors of point and edge defects are also understood in depth by analyzing the underlying thermodynamic and electronic-structure mechanisms. This work not only quantitatively explains the performances of MoS2 in both galvanic corrosion and electrochemical catalysis but also provides a useful structure-ORR map that can facilitate adapting the realistic MoS2 to versatile electrochemical applications.

13.
FEMS Microbiol Lett ; 366(17)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598721

RESUMO

This study mainly investigated the effects of environmental factors on the germination/dormancy, sporulation and resistance of Duddingtonia flagrans chlamydospores. Results showed that the germination temperature of chlamydospores was >10°C and ≤35°C. After the chlamydospores were treated at -20, -40 and -80°C for 12-24 h, they still had the ability to germinate. The chlamydospores germinated at pH 3-13 but did not germinate at pH 1-2 and pH 14. The chlamydospores could tolerate ultraviolet rays for 720 min, but visible light irradiation for 24 h significantly reduced their germination rate. The chlamydospores did not germinate under anaerobic conditions. After the chlamydospores were cultured on water agar (WA) containing 5, 10 and 20% NaCl, their germination rate was significantly inhibited. Once NaCl was removed, the chlamydospores almost completely recovered their germination ability. Among the nine kinds of additives used in the study, 0.3% arginine significantly promoted spore germination (P < 0.05) but 1% trehalose and 1% glycerine significantly inhibited spore germination during incubation from 24 h to 48 h (P < 0.05). This work indicated that D. flagrans chlamydospores are highly resistant to environmental variations and so could be used for biocontrol of animal parasites.

14.
Lancet Public Health ; 4(9): e438-e439, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31493835
15.
PLoS Genet ; 15(9): e1008368, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31518356

RESUMO

Telomere shortening is associated with aging and age-associated diseases. Additionally, telomere dysfunction resulting from telomerase gene mutation can lead to premature aging, such as apparent skin atrophy and hair loss. However, the molecular signaling linking telomere dysfunction to skin atrophy remains elusive. Here we show that dysfunctional telomere disrupts BMP/pSmad/P63 signaling, impairing epidermal stem cell specification and differentiation of skin and hair follicles. We find that telomere shortening mediated by Terc loss up-regulates Follistatin (Fst), inhibiting pSmad signaling and down-regulating P63 and epidermal keratins in an ESC differentiation model as well as in adult development of telomere-shortened mice. Mechanistically, short telomeres disrupt PRC2/H3K27me3-mediated repression of Fst. Our findings reveal that skin atrophy due to telomere dysfunction is caused by a previously unappreciated link with Fst and BMP signaling that could be explored in the development of therapies.


Assuntos
Células-Tronco/metabolismo , Encurtamento do Telômero/fisiologia , Animais , Atrofia/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Regulação da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Transdução de Sinais/genética , Proteínas Smad/metabolismo , Telômero/genética , Encurtamento do Telômero/genética , Transativadores/metabolismo
16.
Front Microbiol ; 10: 1945, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507560

RESUMO

The RNA-dependent RNA polymerases (RdRPs) encoded by the RNA viruses are a unique class of nucleic acid polymerases. Each viral RdRP contains a 500-600 residue catalytic module with palm, fingers, and thumb domains forming an encircled human right hand architecture. Seven polymerase catalytic motifs are located in the RdRP palm and fingers domains, comprising the most conserved parts of the RdRP and are responsible for the RNA-only specificity in catalysis. Functional regions are often found fused to the RdRP catalytic module, resulting in a high level of diversity in RdRP global structure and regulatory mechanism. In this review, we surveyed all 46 RdRP-sequence available virus families of the positive-strand RNA viruses listed in the 2018b collection of the International Committee on Virus Taxonomy (ICTV) and chose a total of 49 RdRPs as representatives. By locating hallmark residues in RdRP catalytic motifs and by referencing structural and functional information in the literature, we were able to estimate the N- and C-terminal boundaries of the catalytic module in these RdRPs, which in turn serve as reference points to predict additional functional regions beyond the catalytic module. Interestingly, a large number of virus families may have additional regions fused to the RdRP N-terminus, while only a few of them have such regions on the C-terminal side of the RdRP. The current knowledge on these additional regions, either in three-dimensional (3D) structure or in function, is quite limited. In the five RdRP-structure available virus families in the positive-strand RNA viruses, only the Flaviviridae family has the 3D structural information resolved for such regions. Hence, future efforts to solve full-length RdRP structures containing these regions and to dissect the functional contribution of them are necessary to improve the overall understanding of the RdRP proteins as an evolutionarily integrated group, and our analyses here may serve as a guideline for selecting representative RdRP systems in these studies.

17.
Brain Behav ; 9(9): e01372, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31386307

RESUMO

PURPOSE: To identify deletions, duplications, and point mutations in 55 previously reported genes associated with Parkinson's disease (PD) and certain genes associated with tremor, spinocerebellar ataxia, and dystonia in a Han Chinese pedigree with early-onset Parkinson's disease (EOPD). PATIENTS AND METHODS: Clinical examinations and genomic analyses were performed on six subjects belonging to three generations of a Han Chinese family. Target region capture and high-throughput sequencing were used to screen these genes associated with PD, tremor, spinocerebellar ataxia, and dystonia. The multiplex ligation-dependent probe amplification (MLPA) method was applied to detect rearrangements in PARK2 exons. Direct Sanger sequencing of samples from all subjects further verified the detected abnormal PRKRA, SPTBN2, and ATXN2 gene fragments. RESULTS: Two family members were diagnosed with PD based on the clinical manifestations, imaging analyses. PARK2 gene heterozygous deletion of exon 3 and heterozygous duplication of exon 6 were identified in them (II-3 and 4). A single heterozygous deletion of exon 3 in PARK2 was detected in II-5 and III-10. A single duplication of exon 6 in PARK2 was detected in I1. Both the heterozygous mutation c.2834G>A (p. R945H) in exon 16 and the heterozygous mutation c.1924 C>T (p. R642W) in exon 14 of the SPTBN2 gene were identified in II-3, II-4, and III-10. The heterozygous mutation c.2989 C>T (p. R997X) in exon 24 of the ATXN2 gene was detected in II-4 and II-5, and the heterozygous mutation c.170 C>A (p. S57Y) in exon 2 of the PRKRA gene was detected in II-3, II-4, and III-10. Other mutations in some genes associated with PD, tremor, spinocerebellar ataxia, and dystonia were not detected. CONCLUSIONS: Novel compound heterozygous mutations were identified in a Han Chinese pedigree and might represent a cause of EOPD.

18.
Conserv Biol ; 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31268188

RESUMO

Habitat loss can trigger migration network collapse by isolating migratory bird breeding grounds from nonbreeding grounds. Theoretically, habitat loss can have vastly different impacts depending on the site's importance within the migratory corridor. However, migration-network connectivity and the impacts of site loss are not completely understood. We used GPS tracking data on 4 bird species in the Asian flyways to construct migration networks and proposed a framework for assessing network connectivity for migratory species. We used a node-removal process to identify stopover sites with the highest impact on connectivity. In general, migration networks with fewer stopover sites were more vulnerable to habitat loss. Node removal in order from the highest to lowest degree of habitat loss yielded an increase of network resistance similar to random removal. In contrast, resistance increased more rapidly when removing nodes in order from the highest to lowest betweenness value (quantified by the number of shortest paths passing through the specific node). We quantified the risk of migration network collapse and identified crucial sites by first selecting sites with large contributions to network connectivity and then identifying which of those sites were likely to be removed from the network (i.e., sites with habitat loss). Among these crucial sites, 42% were not designated as protected areas. Setting priorities for site protection should account for a site's position in the migration network, rather than only site-specific characteristics. Our framework for assessing migration-network connectivity enables site prioritization for conservation of migratory species.

19.
J Adv Res ; 20: 9-21, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31193017

RESUMO

The efficacy of gemcitabine therapy is often insufficient for the treatment of pancreatic cancer. The current study demonstrated that LW6, a chemical inhibitor of hypoxia-inducible factor 1α, is a promising drug for enhancing the chemosensitivity to gemcitabine. LW6 monotherapy and the combination therapy of LW6 plus gemcitabine significantly inhibited cell proliferation and enhanced cell death in pancreatic cancer cells. This combination therapy also significantly reduced the tumor weight in a syngeneic orthotopic pancreatic carcinoma model without causing toxic side effects. In addition, this study provides insight into the mechanism of how LW6 interferes with the pathophysiology of pancreatic cancer. The results revealed that LW6 inhibited autophagic flux, which is defined by the accumulation of microtubule-associated protein 1 light chain 3 (LC3) and p62/SQSTM1. Moreover, these results were verified by the analysis of a tandem RFP-GFP-tagged LC3 protein. Thence, for the first time, these data demonstrate that LW6 enhances the anti-tumor effects of gemcitabine and inhibits autophagic flux. This suggests that the combination therapy of LW6 plus gemcitabine may be a novel therapeutic strategy for pancreatic cancer patients.

20.
Transl Oncol ; 12(9): 1164-1176, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31207547

RESUMO

Telomere length maintenance is essential for cell proliferation, which is particularly prominent in cancer. We validate that the primary colorectal tumors exhibit heterogeneous telomere lengths but mostly (90%) short telomeres relative to normal tissues. Intriguingly, relatively short telomeres are associated with tumor malignancy as indicated by poorly differentiated state, and these tumors contain more cancer stem-like cells (CSLCs) identified by several commonly used markers CD44, EPHB2 or LGR5. Moreover, promyelocytic leukemia (PML) and ALT-associated PML nuclear bodies (APBs) are frequently found in tumors with short telomeres and high proliferation. In contrast, distant normal tissues rarely or only minimally express PML. Inhibition of PML and APBs by an ATR inhibitor decreases proliferation of CSLCs and organoids, suggesting a potential therapeutic target to progressive colorectal tumors. Together, telomere maintenance underling tumor progression is connected with CSLCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA