Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 721
Filtrar
1.
Bioact Mater ; 19: 538-549, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35600977

RESUMO

Nanoprobes that offer both fluorescence imaging (FI) and magnetic resonance imaging (MRI) can provide supplementary information and hold synergistic advantages. However, synthesis of such dual-modality imaging probes that simultaneously exhibit tunability of functional groups, high stability, great biocompatibility and desired dual-modality imaging results remains challenging. In this study, we used an amphiphilic block polymer from (ethylene glycol) methyl ether methacrylate (OEGMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) derivatives as a carrier to conjugate a MR contrast agent, Gd-DOTA, and a two-photon fluorophore with an aggregation-induced emission (AIE) effect, TPBP, to construct a MR/two-photon fluorescence dual-modality contrast agent, Gd-DOTA-TPBP. Incorporation of gadolinium in the hydrophilic chain segment of the OEGMA-based carrier resulted in a high r 1 value for Gd-DOTA-TPBP, revealing a great MR imaging resolution. The contrast agent specifically accumulated in the tumor region, allowing a long enhancement duration for vascular and tumor contrast-enhanced MR imaging. Meanwhile, coupling TPBP with AIE properties to the hydrophobic chain segment of the carrier not only improved its water solubility and reduced its cytotoxicity, but also significantly enhanced its imaging performance in an aqueous phase. Gd-DOTA-TPBP was also demonstrated to act as an excellent fluorescence probe for two-photon-excited bioimaging with higher resolution and greater sensitivity than MRI. Since high-resolution, complementary MRI/FI dual-modal images were acquired at both cellular and tissue levels in tumor-bearing mice after application of Gd-DOTA-TPBP, it has great potential in the early phase of disease diagnosis.

2.
Seizure ; 101: 103-108, 2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35944422

RESUMO

OBJECTIVE: To investigate whether the dynamic functional connectivity (dFC) of striatal-cortical circuits changes in juvenile myoclonic epilepsy (JME). METHODS: The resting-state EEG-fMRI and the sliding-window approach were adopted to explore the dynamic striatal-cortical circuitry in thirty JME patients compared with 30 well-matched health controls (HCs). Six pairs of striatal seeds were selected as regions of interests. The correlation analysis was performed to reveal the relationship between the altered dFC variability and clinical variables in JME group. RESULTS: JME patients exhibited increased dFC variability mainly involved in fronto-striatal and striatal-thalamic networks; decreased dFC variability between striatum subdivisions and default mode network (DMN) regions compared with HCs (p<0.05, GRF corrected). In addition, the hypervariability between left ventral-rostral putamen and left medial superior frontal gyrus was positively (r= 0.493, p=0.008) correlated with the mean frequency score of myoclonic seizures in JME group. CONCLUSION: JME presented altered dFC variability in striatal-cortical circuits. The pattern of altered circuits showed increased variability in fronto-striatal and striatal-thalamic networks and decreased variability in striatal-DMN. These results provide novel information about the dynamic neural striatal-cortical circuitry of JME.

3.
Cereb Cortex ; 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35965072

RESUMO

Acupuncture is effective in treating functional dyspepsia (FD), while its efficacy varies significantly from different patients. Predicting the responsiveness of different patients to acupuncture treatment based on the objective biomarkers would assist physicians to identify the candidates for acupuncture therapy. One hundred FD patients were enrolled, and their clinical characteristics and functional brain MRI data were collected before and after treatment. Taking the pre-treatment functional brain network as features, we constructed the support vector machine models to predict the responsiveness of FD patients to acupuncture treatment. These features contributing critically to the accurate prediction were identified, and the longitudinal analyses of these features were performed on acupuncture responders and non-responders. Results demonstrated that prediction models achieved an accuracy of 0.76 ± 0.03 in predicting acupuncture responders and non-responders, and a R2 of 0.24 ± 0.02 in predicting dyspeptic symptoms relief. Thirty-eight functional brain network features associated with the orbitofrontal cortex, caudate, hippocampus, and anterior insula were identified as the critical predictive features. Changes in these predictive features were more pronounced in responders than in non-responders. In conclusion, this study provided a promising approach to predicting acupuncture efficacy for FD patients and is expected to facilitate the optimization of personalized acupuncture treatment plans for FD.

4.
Schizophr Bull ; 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35925035

RESUMO

BACKGROUND AND HYPOTHESIS: Previous studies have reported effects of antipsychotic treatment and illness duration on brain features. This study used a machine learning approach to examine whether these factors in aggregate impacted the utility of MRI features for differentiating individual schizophrenia patients from healthy controls. STUDY DESIGN: This case-control study used patients with never-treated first-episode schizophrenia (FES, n = 179) and long-term ill schizophrenia (LTSZ, n = 30), with follow-up of the FES group after treatment (n = 71), a group of patients who had received long-term antipsychotic treatment (n = 93) and age and sex-matched healthy controls (n = 373) for each patient group. A multiple kernel learning classifier combining both structural and functional brain features was used to discriminate individual patients from controls. STUDY RESULTS: MRI features differentiated untreated FES (0.73) and LTSZ (0.83) patients from healthy controls with moderate accuracy, but accuracy was significantly higher in antipsychotic-treated FES (0.94) and LTSZ (0.98) patients. Treatment was associated with significantly increased accuracy of case identification in both early course and long-term ill patients (both p < .001). Effects of illness duration, examined separately in treated and untreated patients, were less robust. CONCLUSIONS: Our results demonstrate that initiation of antipsychotic treatment alters brain features in ways that further distinguish individual schizophrenia patients from healthy individuals, and have a modest effect of illness duration. Intrinsic illness-related brain alterations in untreated patients, regardless of illness duration, are not sufficiently robust for accurate identification of schizophrenia patients.

5.
J Clin Med ; 11(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35806978

RESUMO

BACKGROUND: Multiple lesions are uncommon in brain gliomas, and their pathophysiology is poorly understood. Invasive growth along white matter tracts is an important clinicopathological characteristic of gliomas, and a major factor in a poor therapeutic outcome. Here, we used probabilistic fiber tracking and cluster analysis to investigate the inter-focal connectivity relationships of multiple gliomas, in order to seek inferential evidence of common origin. METHODS: MRI scans of 46 patients with multiple gliomas were retrospectively analyzed. Before surgery, all patients underwent multimodal functional MR imaging, including diffusion tensor imaging, enhanced 3D T1-weighted imaging, diffusion-weighted imaging, 1H MR spectroscopy, and dynamic susceptibility contrast perfusion-weighted imaging. Probabilistic fiber tracking was used to quantify white matter connectivity between neoplastic foci. Hierarchical cluster analysis was performed to identify patterns of white matter connection. RESULTS: Cluster analysis reveals two patterns of connectivity, one with smaller, and one with greater, connectivity (2675 ± 1098 versus 30432 ± 22707, p < 0.0001). The two subgroups show significant differences in relative cerebral blood volume (2.31 ± 0.95 versus 1.73 ± 0.48, p = 0.002) and lipid/creatine ratio (0.32 ± 0.22 versus 0.060 ± 0.051, p = 0.006). CONCLUSION: Two distinct patterns of white matter connection exist in multiple gliomas. Those with lower connectivity tend to have independent origins, and can be termed true multicentric glioma, whereas those with greater connectivity tend to share common origin, and spread along white matter tracts. True multicentric gliomas have higher vascularity and more intratumoral necrosis. These findings may help to develop personalized therapeutic strategies for multiple gliomas.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35737106

RESUMO

As a stable personality construct, trait emotional intelligence (TEI) refers to a battery of perceived emotion-related skills that make individuals behave effectively to adapt to the environment and maintain well-being. Abundant evidence has consistently shown that TEI is important for the outcomes of many mental health issues, particularly depression and anxiety. However, the neural substrates involved in TEI and the underlying neurobehavioral mechanism of how TEI reduces depression and anxiety symptoms remain largely unknown. Herein, resting-state functional magnetic resonance imaging and a group of behavioral measures were applied to examine these questions among a large sample comprising 231 general adolescent students aged 16-20 years (52% female). Whole-brain correlation analysis and prediction analysis demonstrated that TEI was negatively linked with spontaneous activity (measured with the fractional amplitude of low-frequency fluctuations) in the bilateral medial orbitofrontal cortex (OFC), a critical site implicated in emotion-related processes. Furthermore, structural equation modeling analysis found that TEI mediated the link of OFC spontaneous activity to depressive and anxious symptoms. Collectively, the current findings present new evidence for the neurofunctional bases of TEI and suggest a potential "brain-personality-symptom" pathway for alleviating depressive and anxious symptoms among students in late adolescence.

7.
Carbohydr Polym ; 292: 119662, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725165

RESUMO

Rapid development of stimuli-responsive drug delivery systems (DDSs) for tumor therapy has raised increasing interest in recent decades, and many nanomedicines are prepared to achieve accurate or sustained drug release. However, the fabrication process for these nanomedicines has been far too intricate and their potential biosafety has not been fully understood, which has hampered their clinical translation. Challenges for developing DDSs remain on balancing the complexity of the fabrication process with their translational feasibility. Owing to water-solubility, biocompatibility, biodegradability and CD44-targetability, hyaluronic acid (HA) as a versatile building block has gained great popularity due to a simplified fabrication process and unique characteristics of HA for DDSs. In this review, we overviewed the biological function and multiple chemical modifications of HA, and discussed the fabrication of HA-based drug delivery systems (HA-DDSs) with specific tumor microenvironmental stimuli-responsive linkers. We systemically surveyed the applications of HA-DDSs for chemotherapy, photothermal therapy, photodynamic therapy, immunotherapy, gene delivery and combination therapy.


Assuntos
Neoplasias , Fotoquimioterapia , Sistemas de Liberação de Medicamentos , Humanos , Ácido Hialurônico/uso terapêutico , Nanomedicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-35714858

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) and borderline personality disorder (BPD) have partially overlapping symptom profiles and are highly comorbid in adults. However, whether the behavioral similarities correspond to shared neurobiological substrates is not known. METHODS: An overlapping meta-analysis of 58 ADHD and 66 BPD whole-brain articles incorporating observations from 3401 adult patients and 3238 healthy participants was performed by Seed-based d Mapping. Brain maps were subjected to meta-analytic connectivity modeling and data-driven functional decoding analyses to identify associated neural circuit alterations and relations to behavioral dimensions. RESULTS: Both groups exhibited hypo-activated abnormalities in the left inferior parietal lobule, and altered clusters of the bilateral superior temporal gyrus were disjunctive in ADHD and BPD. No overlapping structural abnormalities were found. Multimodal alterations of ADHD were located in the right putamen and of BPD in the left orbitofrontal cortex. CONCLUSIONS: The transdiagnostic neural bases of ADHD and BPD in temporo-parietal circuitry may underlie overlapping problems of behavioral control, while disorder-specific substrates in fronto-striatal circuitry may account for their distinguishing features in motor and emotion domains respectively.

9.
Front Neurosci ; 16: 907216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35645708

RESUMO

Background: Orthodontic pain is orofacial pain caused by tooth movement. Anxiety is a strong predictor of the severity of such pain, but little is known about the underlying neuropsychological mechanisms of such effects. The purpose of this study was to investigate the effect of orthodontic pain on brain functional networks and to define the mediating role of anxiety in orthodontic pain and brain function. Methods: Graph theory-based network analyses were applied to brain functional magnetic resonance imaging data from 48 healthy participants exposed to 24 h orthodontic pain stimuli and 49 healthy controls without any stimulation. Results: In the experimental orthodontic pain stimulation, brain functional networks retained a small-world organization. At the regional level, the nodal centrality of ipsilateral brain nodes to the pain stimulus was enhanced; in contrast the nodal centrality of contralateral brain areas was decreased, especially the right mid-cingulate cortex, which is involved in pain intensity coding. Furthermore, anxiety mediated the relationship between nodal efficiency of mid-cingulate cortex and pain severity. Conclusion: The results illuminate the neural mechanisms of orthodontic pain by revealing unbalanced hemispherical brain function related to the unilateral pain stimulation, and reveal clinically exploitable evidence that anxiety mediates the relationship between nodal function of right mid-cingulate cortex and orthodontic pain.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35756886

RESUMO

Background: Understanding how treatments change neurobiology is critical to developing predictors of treatment response. This is especially true for anxiety disorders-the most common psychiatric disorders across the lifespan. With this in mind, we examined neurofunctional predictors of treatment response and neurofunctional changes associated with treatment across anxiety disorders. Methods: PubMed/Medline was searched for prospective treatment studies that included parallel examinations of functional activation or connectivity (both task-based and resting state) in adults and youth with panic disorder and generalized, separation, and/or social anxiety disorders published before April 30, 2021. All studies examining baseline predictors or changes related to pharmacologic and psychotherapeutic treatment of DSM-TV and DSM-5 anxiety disorders were included. Demographic, clinical, and treatment data as well as neurofunctional outcomes were extracted and summarized. Results: Twenty-nine studies examined changes in functional activation and/or connectivity (56 treatment arms) related to treatment and twenty-three examined neurofunctional predictors of treatment response. Predictors of treatment response and treatment-related neurofunctional changes were frequently observed within amygdala-prefrontal circuits. However, immense heterogeneity and few replication studies preclude a cohesive neurofunctional treatment response model across anxiety disorders. Conclusions: The extant literature describing neurofunctional aspects of treatment response in anxiety disorders is best viewed as a partially constructed scaffold on which to build a clinically translatable set of robust neuroimaging biomarkers that can be used to guide treatment and to select from available treatment. The construction of this understanding will require harmonization of analytic and task approaches, larger samples, and replication of component studies.

11.
Front Neurosci ; 16: 877103, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712460

RESUMO

Background: Our previous reports reflected some aspects of neuroplastic changes from long-term Chinese chess training but were mainly based on large-scale intrinsic connectivity. In contrast to functional connectivity among remote brain areas, synchronization of local intrinsic activity demonstrates functional connectivity among regional areas. Until now, local connectivity changes in professional Chinese chess players (PCCPs) have been reported only at specific hubs; whole-brain-based local connectivity and its relation to training profiles has not been revealed. Objectives: To investigate whole-brain local connectivity changes and their relation to training profiles in PCCPs. Methods: Regional homogeneity (ReHo) analysis of rs-fMRI data from 22 PCCPs versus 21 novices was performed to determine local connectivity changes and their relation to training profiles. Results: Compared to novices, PCCPs showed increased regional spontaneous activity in the posterior lobe of the left cerebellum, the left temporal pole, the right amygdala, and the brainstem but decreased ReHo in the right precentral gyrus. From a whole-brain perspective, local activity in areas such as the posterior lobe of the right cerebellum and the caudate correlated with training profiles. Conclusion: Regional homogeneity changes in PCCPs were consistent with the classical view of automaticity in motor control and learning. Related areas in the pattern indicated an enhanced capacity for emotion regulation, supporting cool and focused attention during gameplay. The possible participation of the basal ganglia-cerebellar-cerebral networks, as suggested by these correlation results, expands our present knowledge of the neural substrates of professional chess players. Meanwhile, ReHo change occurred in an area responsible for the pronunciation and reading of Chinese characters. Additionally, professional Chinese chess training was associated with change in a region that is affected by Alzheimer's disease (AD).

12.
Transl Psychiatry ; 12(1): 236, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668086

RESUMO

The nucleus accumbens (NAc) is considered a hub of reward processing and a growing body of evidence has suggested its crucial role in the pathophysiology of major depressive disorder (MDD). However, inconsistent results have been reported by studies on reward network-focused resting-state functional MRI (rs-fMRI). In this study, we examined functional alterations of the NAc-based reward circuits in patients with MDD via meta- and mega-analysis. First, we performed a coordinated-based meta-analysis with a new SDM-PSI method for all up-to-date rs-fMRI studies that focused on the reward circuits of patients with MDD. Then, we tested the meta-analysis results in the REST-meta-MDD database which provided anonymous rs-fMRI data from 186 recurrent MDDs and 465 healthy controls. Decreased functional connectivity (FC) within the reward system in patients with recurrent MDD was the most robust finding in this study. We also found disrupted NAc FCs in the DMN in patients with recurrent MDD compared with healthy controls. Specifically, the combination of disrupted NAc FCs within the reward network could discriminate patients with recurrent MDD from healthy controls with an optimal accuracy of 74.7%. This study confirmed the critical role of decreased FC in the reward network in the neuropathology of MDD. Disrupted inter-network connectivity between the reward network and DMN may also have contributed to the neural mechanisms of MDD. These abnormalities have potential to serve as brain-based biomarkers for individual diagnosis to differentiate patients with recurrent MDD from healthy controls.


Assuntos
Transtorno Depressivo Maior , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos , Rede de Modo Padrão , Transtorno Depressivo Maior/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Núcleo Accumbens/diagnóstico por imagem , Recompensa
13.
Artigo em Inglês | MEDLINE | ID: mdl-35585125

RESUMO

Disrupted topological organization of brain functional networks has been widely reported in bipolar disorder. However, the potential clinical implications of structural connectome abnormalities have not been systematically investigated. The present study included 109 unmedicated subjects with acute mania who were assigned to 8 weeks of treatment with quetiapine or lithium and 60 healthy controls. High resolution 3D-T1 weighted magnetic resonance images (MRI) were collected from both groups at baseline, week 1 and week 8. Brain networks were constructed based on the similarity of morphological features across brain regions and analyzed using graph theory approaches. At baseline, individuals with bipolar disorder illness showed significantly lower clustering coefficient (Cp) (p = 0.012) and normalized characteristic path length (λ) (p = 0.004) compared to healthy individuals, as well as differences in nodal centralities across multiple brain regions. No baseline or post-treatment differences were identified between drug treatment conditions, so change after treatment were considered in the combined treatment groups. Relative to healthy individuals, differences in Cp, λ and cingulate gyrus nodal centrality were significantly reduced with treatment; changes in these parameters correlated with changes in Young Mania Rating Scale scores. Baseline structural connectome matrices significantly differentiated responder and non-responder groups at 8 weeks with 74% accuracy. Global and nodal network alterations evident at baseline were normalized with treatment and these changes associated with symptomatic improvement. Further, baseline structural connectome matrices predicted treatment response. These findings suggest that structural connectome abnormalities are clinically significant and may be useful for predicting clinical outcome of treatment and tracking drug effects on brain anatomy in bipolar disorder. CLINICAL TRIALS REGISTRATION: Name: Functional and Neurochemical Brain Changes in First-episode Bipolar Mania Following Successful Treatment with Lithium or Quetiapine. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER: NCT00609193. Name: Neurofunctional and Neurochemical Markers of Treatment Response in Bipolar Disorder. URL: https://clinicaltrials.gov/ . REGISTRATION NUMBER: NCT00608075.

14.
Transl Psychiatry ; 12(1): 189, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523792

RESUMO

Magnetization transfer imaging (MTI) may provide more sensitivity and mechanistic understanding of neuropathological changes associated with schizophrenia than volumetric MRI. This study aims to identify brain magnetization transfer ratio (MTR) changes in antipsychotic-naïve first-episode schizophrenia (FES), and to correlate MTR findings with clinical symptom severity. A total of 143 individuals with antipsychotic-naïve FES and 147 healthy controls (HCs) were included and underwent 3.0 T brain MTI between August 2005 and July 2014. Voxelwise analysis was performed to test for MTR differences with family-wise error corrections. Relationships of these differences to symptom severity were assessed using partial correlations. Exploratory analyses using a support vector machine (SVM) classifier were conducted to discriminate FES from HCs using MTR maps. Model performance was examined using a 10-fold stratified cross-validation. Compared with HCs, individuals with FES exhibited higher MTR values in left thalamus, precuneus, cuneus, and paracentral lobule, that were positively correlated with schizophrenia symptom severity [precuneus (r = 0.34, P = 0.0004), cuneus (r = 0.33, P = 0.0006) and paracentral lobule (r = 0.37, P = 0.001)]. Whole-brain MTR maps identified individuals with FES with overall accuracy 75.5% (219 of 290 individuals) based on SVM approach. In antipsychotic-naïve FES, clinically relevant biophysical abnormalities detected by MTI mainly in the left parieto-occipital regions are informative about local brain pathology, and have potential as diagnostic markers.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/uso terapêutico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/tratamento farmacológico
15.
Schizophr Bull ; 48(4): 881-892, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35569019

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia is increasingly understood as a disorder of brain dysconnectivity. Recently, graph-based approaches such as graph convolutional network (GCN) have been leveraged to explore complex pairwise similarities in imaging features among brain regions, which can reveal abstract and complex relationships within brain networks. STUDY DESIGN: We used GCN to investigate topological abnormalities of functional brain networks in schizophrenia. Resting-state functional magnetic resonance imaging data were acquired from 505 individuals with schizophrenia and 907 controls across 6 sites. Whole-brain functional connectivity matrix was extracted for each individual. We examined the performance of GCN relative to support vector machine (SVM), extracted the most salient regions contributing to both classification models, investigated the topological profiles of identified salient regions, and explored correlation between nodal topological properties of each salient region and severity of symptom. STUDY RESULTS: GCN enabled nominally higher classification accuracy (85.8%) compared with SVM (80.9%). Based on the saliency map, the most discriminative brain regions were located in a distributed network including striatal areas (ie, putamen, pallidum, and caudate) and the amygdala. Significant differences in the nodal efficiency of bilateral putamen and pallidum between patients and controls and its correlations with negative symptoms were detected in post hoc analysis. CONCLUSIONS: The present study demonstrates that GCN allows classification of schizophrenia at the individual level with high accuracy, indicating a promising direction for detection of individual patients with schizophrenia. Functional topological deficits of striatal areas may represent a focal neural deficit of negative symptomatology in schizophrenia.


Assuntos
Conectoma , Esquizofrenia , Encéfalo , Mapeamento Encefálico , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética , Máquina de Vetores de Suporte
16.
Front Neurol ; 13: 834277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35557617

RESUMO

Background: Sleep disturbances are widespread among patients with essential tremor (ET) and may have adverse effects on patients' quality of life. However, the pathophysiology underlying poor quality of sleep (QoS) in patients with ET remains unclear. Our study aimed to identify gray matter (GM) network alterations in the topological properties of structural MRI related to QoS in patients with ET. Method: We enrolled 45 ET patients with poor QoS (SleET), 59 ET patients with normal QoS (NorET), and 66 healthy controls (HC), and they all underwent a three-dimensional T1-weighted MRI scan. We used a graph-theoretical approach to investigate the topological organization of GM morphological networks, and individual morphological brain networks were constructed according to the interregional similarity of GM volume distributions. Furthermore, we performed network-based statistics, and partial correlation analyses between topographic features and clinical characteristics were conducted. Results: Global network organization was disrupted in patients with ET. Compared with the NorET group, the SleET group exhibited disrupted topological GM network organization with a shift toward randomization. Moreover, they showed altered nodal centralities in mainly the frontal, temporal, parietal, and cerebellar lobes. Morphological connection alterations within the default mode network (DMN), salience, and basal ganglia networks were observed in the SleET group and were generally more extensive than those in the NorET and HC groups. Alterations within the cerebello-thalamo-(cortical) network were only detected in the SleET group. The nodal degree of the left thalamus was negatively correlated with the Fahn-Tolosa-Marin Tremor Rating Scale score (r = -0.354, p =0.027). Conclusion: Our findings suggest that potential complex interactions underlie tremor and sleep disruptions in patients with ET. Disruptions within the DMN and the cerebello-thalamo-(cortical) network may have a broader impact on sleep quality in patients with ET. Our results offer valuable insight into the neural mechanisms underlying poor QoS in patients with ET.

17.
Front Neurosci ; 16: 819310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585920

RESUMO

Different acupoints exhibiting similar therapeutic effects are a common phenomenon in acupuncture clinical practice. However, the mechanism underlying this phenomenon remains unclear. This study aimed to investigate the similarities and differences in cerebral activities elicited through stimulation of CV12 and ST36, the two most commonly used acupoints, in the treatment of gastrointestinal diseases, so as to partly explore the mechanism of the different acupoints with similar effects. Thirty-eight eligible functional dyspepsia (FD) patients were randomly assigned into either group A (CV12 group) or group B (ST36 group). Each patient received five acupuncture treatments per week for 4 weeks. The Symptom Index of Dyspepsia (SID), Nepean Dyspepsia Symptom Index (NDSI), and Nepean Dyspepsia Life Quality Index (NDLQI) were used to assess treatment efficacy. Functional MRI (fMRI) scans were performed to detect cerebral activity changes at baseline and at the end of the treatment. The results demonstrated that (1) improvements in NDSI, SID, and NDLQI were found in both group A and group B (p < 0.05). However, there were no significant differences in the improvements of the SID, NDSI, and NDLQI scores between group A and group B (p > 0.05); (2) all FD patients showed significantly increased amplitude of low-frequency fluctuation (ALFF) in the left postcentral gyrus after acupuncture treatment, and the changes of ALFF in the left postcentral gyrus were significantly related to the improvements of SID scores (r = 0.358, p = 0.041); and (3) needling at CV12 significantly decreased the resting-state functional connectivity (rsFC) between the left postcentral gyrus and angular gyrus, caudate, middle frontal gyrus (MFG), and cerebellum, while needling at ST36 significantly increased the rsFC between the left postcentral gyrus with the precuneus, superior frontal gyrus (SFG), and MFG. The results indicated that CV12 and ST36 shared similar therapeutic effects for dyspepsia, with common modulation on the activity of the postcentral gyrus in FD patients. However, the modulatory pattern on the functional connectivity of the postcentral gyrus was different. Namely, stimulation of CV12 primarily involved the postcentral gyrus-reward network, while stimulation of ST36 primarily involved the postcentral gyrus-default mode network circuitry.

18.
Front Aging Neurosci ; 14: 841696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527734

RESUMO

Alzheimer's disease (AD) is the most common form of dementia. Currently, only symptomatic management is available, and early diagnosis and intervention are crucial for AD treatment. As a recent deep learning strategy, generative adversarial networks (GANs) are expected to benefit AD diagnosis, but their performance remains to be verified. This study provided a systematic review on the application of the GAN-based deep learning method in the diagnosis of AD and conducted a meta-analysis to evaluate its diagnostic performance. A search of the following electronic databases was performed by two researchers independently in August 2021: MEDLINE (PubMed), Cochrane Library, EMBASE, and Web of Science. The Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool was applied to assess the quality of the included studies. The accuracy of the model applied in the diagnosis of AD was determined by calculating odds ratios (ORs) with 95% confidence intervals (CIs). A bivariate random-effects model was used to calculate the pooled sensitivity and specificity with their 95% CIs. Fourteen studies were included, 11 of which were included in the meta-analysis. The overall quality of the included studies was high according to the QUADAS-2 assessment. For the AD vs. cognitively normal (CN) classification, the GAN-based deep learning method exhibited better performance than the non-GAN method, with significantly higher accuracy (OR 1.425, 95% CI: 1.150-1.766, P = 0.001), pooled sensitivity (0.88 vs. 0.83), pooled specificity (0.93 vs. 0.89), and area under the curve (AUC) of the summary receiver operating characteristic curve (SROC) (0.96 vs. 0.93). For the progressing MCI (pMCI) vs. stable MCI (sMCI) classification, the GAN method exhibited no significant increase in the accuracy (OR 1.149, 95% CI: 0.878-1.505, P = 0.310) or the pooled sensitivity (0.66 vs. 0.66). The pooled specificity and AUC of the SROC in the GAN group were slightly higher than those in the non-GAN group (0.81 vs. 0.78 and 0.81 vs. 0.80, respectively). The present results suggested that the GAN-based deep learning method performed well in the task of AD vs. CN classification. However, the diagnostic performance of GAN in the task of pMCI vs. sMCI classification needs to be improved. Systematic Review Registration: [PROSPERO], Identifier: [CRD42021275294].

19.
Acta Neurol Scand ; 146(2): 144-151, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506500

RESUMO

OBJECTIVES: To explore dynamic alterations of cortical thickness before and after successful anterior temporal lobectomy (ATL) in patients with unilateral mesial temporal lobe epilepsy (mTLE). MATERIALS AND METHODS: High-resolution T1-weighted MRI was obtained in 28 mTLE patients who achieved seizure freedom for at least 24 months after ATL and 29 healthy controls. Patients were scanned at five timepoints, including before surgery, 3, 6, 12 and 24 months after surgery. Preoperative cortical thickness of mTLE patients were compared with healthy controls. Dynamic alterations of cortical thickness before and after surgery were compared among five scans using linear mixed models. RESULTS: Patients with mTLE showed cortical thinning pre-surgically in ipsilateral entorhinal cortex, parahippocampal gyrus, inferior parietal cortex, lateral occipital cortex; contralateral pericalcarine cortex (PCC); and bilateral caudal middle frontal gyrus (cMFG), paracentral lobule, precentral gyrus (PCG), superior parietal cortex. Cortical thickening was observed in contralateral rostral anterior cingulate cortex (rACC). Patients showed postsurgical cortical thinning in ipsilateral temporal lobe, fusiform gyrus, caudal anterior cingulate cortex, lingual gyrus, and insula. Ipsilateral cMFG, PCC, and contralateral PCG showed significant cortical thickening after surgery. In addition, contralateral rACC showed cortical thickening at 3 months follow-up, however, with obvious cortical thinning at 24 months follow-up. CONCLUSIONS: Mesial temporal lobe epilepsy patients showed widespread cortical thinning before and after anterior temporal lobectomy. Progressive cortical thinning mainly existed in neighboring regions of resection. Postoperative cortical thickening may indicate cortical remodeling after successful surgery.


Assuntos
Epilepsia do Lobo Temporal , Lobectomia Temporal Anterior , Afinamento Cortical Cerebral , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Humanos , Imageamento por Ressonância Magnética , Lobo Temporal/cirurgia
20.
Front Neurosci ; 16: 814410, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431791

RESUMO

Some important clinical characteristics of major depressive disorder (MDD) differ between sexes. We explored abnormal spontaneous neuronal activity in MDD patients using the amplitude of low-frequency fluctuation (ALFF) and its relationship to clinical manifestations in male and female patients, to seek the neural mechanisms underlying sex-related differences in depression. Twenty-five male MDD patients, 36 female MDD patients, and 25 male and 36 female matched healthy controls (HC) were included. The ALFF difference was investigated among four groups, and partial correlation analysis was used to explore a possible clinical relevance. The main effect results of sex difference were located in the bilateral caudate nucleus and posterior cingulate gyrus. Post hoc comparisons found that the male MDD patients showed decreased ALFF in the bilateral caudate nucleus and posterior cingulate gyrus when compared with female MDD patients/female HCs, and female MDD patients showed increased ALFF in the bilateral caudate nucleus and posterior cingulate gyrus when compared with male HCs. The average ALFF of the right caudate nucleus was positively correlated with illness duration in female MDD patients. Our results suggest that the sex-specific abnormal brain activity might be a potential pathomechanism of different symptoms in male and female MDD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...