Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Intervalo de ano de publicação
Environ Pollut ; 243(Pt A): 427-436, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212797


In Mediterranean areas, dry deposition is a major component of the total atmospheric N input to natural habitats, particularly to forest ecosystems. An innovative approach, combining the empirical inferential method (EIM) for surface deposition of NO3- and NH4+ with stomatal uptake of NH3, HNO3 and NO2 derived from the DO3SE (Deposition of Ozone and Stomatal Exchange) model, was used to estimate total dry deposition of inorganic N air pollutants in four holm oak forests under Mediterranean conditions in Spain. The estimated total deposition varied among the sites and matched the geographical patterns previously found in model estimates: higher deposition was determined at the northern site (28.9 kg N ha-1 year-1) and at the northeastern sites (17.8 and 12.5 kg N ha-1 year-1) than at the central-Spain site (9.4 kg N ha-1 year-1). On average, the estimated dry deposition of atmospheric N represented 77% ±â€¯2% of the total deposition of N, of which surface deposition of gaseous and particulate atmospheric N averaged 10.0 ±â€¯2.9 kg N ha-1 year-1 for the four sites (58% of the total deposition), and stomatal deposition of N gases averaged 3.3 ±â€¯0.8 kg N ha-1 year-1 (19% of the total deposition). Deposition of atmospheric inorganic N was dominated by the surface deposition of oxidized N in all the forests (means of 54% and 42% of the dry and total deposition, respectively). The relative contribution of NO2 to dry deposition averaged from 19% in the peri-urban forests to 11% in the most natural site. During the monitoring period, the empirical critical loads provisionally proposed for ecosystem protection (10-20 kg N ha-1 year-1) was exceeded in three of the four studied forests.

Florestas , Nitrogênio/análise , Folhas de Planta/química , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Químicos , Espanha
Environ Sci Pollut Res Int ; 24(34): 26259-26268, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28455565


Ozone (O3) critical levels have been established under the Long-Range Transboundary Air Pollution Convention to assess the risk of O3 effects in European vegetation. A recent review study has led to the development of O3 critical levels for annual Mediterranean pasture species using plants growing in well-watered pots at a coastal site and under low levels of competition. However, uncertainties remain in the extrapolation of the O3 sensitivity of these species under natural conditions. The response of two O3-sensitive annual Mediterranean pasture Trifolium species at the coastal site was compared with the response of the same species growing at a continental site, in natural soil and subject to water-stress and inter-specific competition, representing more closely their natural habitat. The slopes of exposure- and dose-response relationships derived for the two sites showed differences in the response to O3 between sites attributed to differences in environmental growing conditions, growing medium and the level of inter-specific competition, but the effect of the individual factors could not be assessed separately. Dose-based O3 indices partially explained differences due to environmental growing conditions between sites. The slopes showed that plants were more sensitive to O3 at the continental site, but homogeneity of slopes tests revealed that results from both experimental sites may be combined. Although more experimental data considering complex inter-specific competition situations and the effect of important interactive factors such as nitrogen would be needed, these results confirm the validity of applying the current flux-based O3 critical level under close to natural growing conditions. The AOT40-based O3 critical level derived at the coastal site was also considered a suitable risk indicator in close to natural growing conditions in the absence of soil moisture limitations on plant growth.

Poluentes Atmosféricos/toxicidade , Monitoramento Ambiental/métodos , Ozônio/toxicidade , Trifolium/efeitos dos fármacos , Poluentes Atmosféricos/análise , Ecossistema , Nitrogênio , Ozônio/análise
Environ Pollut ; 216: 653-661, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27344084


Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work, bulk and throughfall deposition of inorganic nitrogen were monitored in three different holm oak forests in Spain during two years. The results obtained with IECs were contrasted with a conventional technique using bottle collectors and with a literature review of similar studies. The performance of IECs in comparison with the conventional method was good for measuring bulk deposition of nitrate and acceptable for ammonium and total dissolved inorganic nitrogen. Mean annual bulk deposition of inorganic nitrogen ranged 3.09-5.43 kg N ha(-1) according to IEC methodology, and 2.42-6.83 kg N ha(-1) y(-1) using the conventional method. Intra-annual variability of the net throughfall deposition of nitrogen measured with the conventional method revealed the existence of input pulses of nitrogen into the forest soil after dry periods, presumably originated from the washing of dry deposition accumulated in the canopy. Important methodological recommendations on the IEC method and discussed, compiled and summarized.

Compostos de Amônio/análise , Monitoramento Ambiental/métodos , Florestas , Nitratos/análise , Ciclo do Nitrogênio , Ecossistema , Resinas de Troca Iônica , Região do Mediterrâneo , Nitrogênio/análise , Quercus , Solo , Espanha
Environ Sci Pollut Res Int ; 23(7): 6400-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26620865


Peri-urban vegetation is generally accepted as a significant remover of atmospheric pollutants, but it could also be threatened by these compounds, with origin in both urban and non-urban areas. To characterize the seasonal and geographical variation of pollutant concentrations and to improve the empirical understanding of the influence of Mediterranean broadleaf evergreen forests on air quality, four forests of Quercus ilex (three peri-urban and one remote) were monitored in different areas in Spain. Concentrations of nitrogen dioxide (NO2), ammonia (NH3), nitric acid (HNO3) and ozone (O3) were measured during 2 years in open areas and inside the forests and aerosols (PM10) were monitored in open areas during 1 year. Ozone was the only air pollutant expected to have direct phytotoxic effects on vegetation according to current thresholds for the protection of vegetation. The concentrations of N compounds were not high enough to directly affect vegetation but could be contributing through atmospheric N deposition to the eutrophization of these ecosystems. Peri-urban forests of Q. ilex showed a significant below-canopy reduction of gaseous concentrations (particularly NH3, with a mean reduction of 29-38%), which indicated the feasibility of these forests to provide an ecosystem service of air quality improvement. Well-designed monitoring programs are needed to further investigate air quality improvement by peri-urban ecosystems while assessing the threat that air pollution can pose to vegetation.

Poluentes Atmosféricos/análise , Amônia/análise , Ácido Nítrico/análise , Dióxido de Nitrogênio/análise , Ozônio/análise , Poluição do Ar , Cidades , Monitoramento Ambiental , Florestas , Material Particulado/análise , Quercus/crescimento & desenvolvimento , Espanha , Tempo (Meteorologia)
Environ Pollut ; 159(8-9): 2138-47, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21269745


Tropospheric ozone (O(3)) is considered one of the most important air pollutants affecting human health. The role of peri-urban vegetation in modifying O(3) concentrations has been analyzed in the Madrid region (Spain) using the V200603par-rc1 version of the CHIMERE air quality model. The 3.7 version of the MM5 meteorological model was used to provide meteorological input data to the CHIMERE. The emissions were derived from the EMEP database for 2003. Land use data and the stomatal conductance model included in CHIMERE were modified according to the latest information available for the study area. Two cases were considered for the period April-September 2003: (1) actual land use and (2) a fictitious scenario where El Pardo peri-urban forest was converted to bare-soil. The results show that El Pardo forest constitutes a sink of O(3) since removing this green area increased O(3) levels over the modified area and over down-wind surrounding areas.

Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Modelos Químicos , Árvores/fisiologia , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/metabolismo , Cidades , Ozônio/análise , Ozônio/metabolismo , Espanha , Árvores/classificação , Árvores/metabolismo