Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(4): 044715, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32007066

RESUMO

In this work, ambient pressure x-ray photoelectron spectroscopy (APXPS) is used to study the initial stages of water adsorption on vanadium oxide surfaces. V 2p, O 1s, C 1s, and valence band XPS spectra were collected as a function of relative humidity in a series of isotherm and isobar experiments. Experiments were carried out on two VO2 thin films on TiO2 (100) substrates, prepared with different surface cleaning procedures. Hydroxyl and molecular water surface species were identified, with up to 0.5 ML hydroxide present at the minimum relative humidity, and a consistent molecular water adsorption onset occurring around 0.01% relative humidity. The work function was found to increase with increasing relative humidity, suggesting that surface water and hydroxyl species are oriented with the hydrogen atoms directed away from the surface. Changes in the valence band were also observed as a function of relative humidity. The results were similar to those observed in APXPS experiments on other transition metal oxide surfaces, suggesting that H2O-OH and H2O-H2O surface complex formation plays an important role in the oxide wetting process and water dissociation. Compared to polycrystalline vanadium metal, these vanadium oxide films generate less hydroxide and appear to be more favorable for molecular water adsorption.

2.
Nano Lett ; 17(12): 7339-7344, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29111764

RESUMO

The unique electronic band structure of indium nitride InN, part of the industrially significant III-N class of semiconductors, offers charge transport properties with great application potential due to its robust n-type conductivity. Here, we explore the water sensing mechanism of InN thin films. Using angle-resolved photoemission spectroscopy, core level spectroscopy, and theory, we derive the charge carrier density and electrical potential of a two-dimensional electron gas, 2DEG, at the InN surface and monitor its electronic properties upon in situ modulation of adsorbed water. An electric dipole layer formed by water molecules raises the surface potential and accumulates charge in the 2DEG, enhancing surface conductivity. Our intuitive model provides a novel route toward understanding the water sensing mechanism in InN and, more generally, for understanding sensing material systems beyond InN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA