Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(26): 14721-14729, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32554500

RESUMO

Supported metal catalysts are extensively used in industrial and environmental applications. To improve their performance, it is crucial to identify the most active sites. This identification is, however, made challenging by the presence of a large number of potential surface structures that complicate such an assignment. Often, the active site is formed by an ensemble of atoms, thus introducing further complications in its identification. Being able to produce uniform structures and identify the ones that are responsible for the catalyst performance is a crucial goal. In this work, we utilize a combination of uniform Pd/Pt nanocrystal catalysts and theory to reveal the catalytic active-site ensemble in highly active propene combustion materials. Using colloidal chemistry to exquisitely control nanoparticle size, we find that intrinsic rates for propene combustion in the presence of water increase monotonically with particle size on Pt-rich catalysts, suggesting that the reaction is structure dependent. We also reveal that water has a near-zero or mildly positive reaction rate order over Pd/Pt catalysts. Theory insights allow us to determine that the interaction of water with extended terraces present in large particles leads to the formation of step sites on metallic surfaces. These specific step-edge sites are responsible for the efficient combustion of propene at low temperature. This work reveals an elusive geometric ensemble, thus clearly identifying the active site in alkene combustion catalysts. These insights demonstrate how the combination of uniform catalysts and theory can provide a much deeper understanding of active-site geometry for many applications.

2.
J Chem Phys ; 151(15): 154703, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640349

RESUMO

Pd- and Pt-based catalysts are highly studied materials due to their widespread use in emissions control catalysis. However, claims continue to vary regarding the active phase and oxidation state of the metals. Different conclusions have likely been reached due to the heterogeneous nature of such materials containing various metal nanoparticle sizes and compositions, which may each possess unique redox features. In this work, using uniform nanocrystal catalysts, we study the effect of particle size and alloying on redox properties of Pd-based catalysts and show their contribution to methane combustion activity using operando quick extended x-ray absorption fine structure measurements. Results demonstrate that for all studied Pd sizes (3 nm-16 nm), Pd oxidation directly precedes CH4 combustion to CO2, suggesting Pd oxidation as a prerequisite step to methane combustion, and an oxidation pretreatment shows equal or better catalysis than a reduction pretreatment. Results are then extended to uniform alloyed PtxPd1-x nanoparticles, where oxidative pretreatments are shown to enhance low-temperature combustion. In these uniform alloys, we observe a composition-dependent effect with Pt-rich alloys showing the maximum difference between oxidative and reductive pretreatments. In Pt-rich alloys, we initially observe that the presence of Pt maintains Pd in a lower-activity reduced state. However, with time on stream, PdO eventually segregates under oxidizing combustion conditions, leading to a slowly increasing activity. Overall, across particle sizes and alloy compositions, we relate increased catalytic activity to Pd oxidation, thus shedding light on previous contrasting results related to the methane combustion activity of these catalysts.

3.
Angew Chem Int Ed Engl ; 58(48): 17451-17457, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31545533

RESUMO

Catalytic CO2 reduction to fuels and chemicals is a major pursuit in reducing greenhouse gas emissions. One approach utilizes the reverse water-gas shift reaction, followed by Fischer-Tropsch synthesis, and iron is a well-known candidate for this process. Some attempts have been made to modify and improve its reactivity, but resulted in limited success. Now, using ruthenium-iron oxide colloidal heterodimers, close contact between the two phases promotes the reduction of iron oxide via a proximal hydrogen spillover effect, leading to the formation of ruthenium-iron core-shell structures active for the reaction at significantly lower temperatures than in bare iron catalysts. Furthermore, by engineering the iron oxide shell thickness, a fourfold increase in hydrocarbon yield is achieved compared to the heterodimers. This work shows how rational design of colloidal heterostructures can result in materials with significantly improved catalytic performance in CO2 conversion processes.

4.
ACS Appl Mater Interfaces ; 11(33): 30154-30162, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31353888

RESUMO

Here, we propose a simple approach for the design of highly porous multicomponent heterostructures by infiltration of block-co-polymer templates with inorganic precursors in swelling solvents followed by gas-phase sequential infiltration synthesis and thermal annealing. This approach can prepare conformal coatings, free-standing membranes, and powders consisting of uniformly sized metal or metal oxide nanoparticles (NPs) well dispersed in a porous oxide matrix. We employed this new, versatile synthetic concept to synthesize catalytically active heterostructures of uniformly dispersed ∼4.3 nm PdO nanoparticles accessible through three-dimensional pore networks of the alumina support. Importantly, such materials reveal high resistance against sintering at 800 °C, even at relatively high loadings of NPs (∼10 wt %). At the same time, such heterostructures enable high mass transport due to highly interconnected nature of the pores. The surface of synthesized nanoparticles in the porous matrix is highly accessible, which enables their good catalytic performance in methane and carbon monoxide oxidation. In addition, we demonstrate that this approach can be utilized to synthesize heterostructures consisting of different types of NPs on a highly porous support. Our results show that swelling-based infiltration provides a promising route toward the robust and scalable synthesis of multicomponent structures.

5.
J Am Chem Soc ; 140(42): 13736-13745, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30252458

RESUMO

CO2 reduction to higher value products is a promising way to produce fuels and key chemical building blocks while reducing CO2 emissions. The reaction at atmospheric pressure mainly yields CH4 via methanation and CO via the reverse water-gas shift (RWGS) reaction. Describing catalyst features that control the selectivity of these two pathways is important to determine the formation of specific products. At the same time, identification of morphological changes occurring to catalysts under reaction conditions can be crucial to tune their catalytic performance. In this contribution we investigate the dependency of selectivity for CO2 reduction on the size of Ru nanoparticles (NPs) and on support. We find that even at rather low temperatures (210 °C), oxidative pretreatment induces redispersion of Ru NPs supported on CeO2 and leads to a complete switch in the performance of this material from a well-known selective methanation catalyst to an active and selective RWGS catalyst. By utilizing in situ X-ray absorption spectroscopy, we demonstrate that the low-temperature redispersion process occurs via decomposition of the metal oxide phase with size-dependent kinetics, producing stable single-site RuO x/CeO2 species strongly bound to the CeO2 support that are remarkably selective for CO production. These results show that reaction selectivity can be heavily dependent on catalyst structure and that structural changes of the catalyst can occur even at low temperatures and can go unseen in materials with less defined structures.

6.
J Am Chem Soc ; 139(34): 11989-11997, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28800226

RESUMO

Promoters enhance the performance of catalytic active phases by increasing rates, stability, and/or selectivity. The process of identifying promoters is in most cases empirical and relies on testing a broad range of catalysts prepared with the random deposition of active and promoter phases, typically with no fine control over their localization. This issue is particularly relevant in supported bimetallic systems, where two metals are codeposited onto high-surface area materials. We here report the use of colloidal bimetallic nanocrystals to produce catalysts where the active and promoter phases are colocalized to a fine extent. This strategy enables a systematic approach to study the promotional effects of several transition metals on palladium catalysts for methane oxidation. In order to achieve these goals, we demonstrate a single synthetic protocol to obtain uniform palladium-based bimetallic nanocrystals (PdM, M = V, Mn, Fe, Co, Ni, Zn, Sn, and potentially extendable to other metal combinations) with a wide variety of compositions and sizes based on high-temperature thermal decomposition of readily available precursors. Once the nanocrystals are supported onto oxide materials, thermal treatments in air cause segregation of the base metal oxide phase in close proximity to the Pd phase. We demonstrate that some metals (Fe, Co, and Sn) inhibit the sintering of the active Pd metal phase, while others (Ni and Zn) increase its intrinsic activity compared to a monometallic Pd catalyst. This procedure can be generalized to systematically investigate the promotional effects of metal and metal oxide phases for a variety of active metal-promoter combinations and catalytic reactions.

7.
Tetrahedron ; 71(35): 5781-5792, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26461082

RESUMO

The development and optimization of a palladium-catalyzed asymmetric conjugate addition of arylboronic acids to cyclic enone conjugate acceptors is described. These reactions employ air-stable and readily-available reagents in an operationally simple and robust transformation that yields ß-quaternary ketones in high yields and enantioselectivities. Notably, the reaction itself is highly tolerant of atmospheric oxygen and moisture and therefore does not require the use of dry or deoxygenated solvents, specially purified reagents, or an inert atmosphere. The ring size and ß-substituent of the enone are highly variable, and a wide variety of ß-quaternary ketones can be synthesized. More recently, the use of NH4PF6 has further expanded the substrate scope to include heteroatom-containing arylboronic acids and ß-acyl enone substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA