Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(5): 1671-1684, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35257197

RESUMO

KEY MESSAGE: The multiple derivative lines (MDLs) characterized in this study offer a promising strategy for harnessing the diversity of wild emmer wheat for durum and bread wheat improvement. Crop domestication has diminished genetic diversity and reduced phenotypic plasticity and adaptation. Exploring the adaptive capacity of wild progenitors offer promising opportunities to improve crops. We developed a population of 178 BC1F6 durum wheat (Triticum turgidum ssp. durum) lines by crossing and backcrossing nine wild emmer wheat (T. turgidum ssp. dicoccoides) accessions with the common durum wheat cultivar 'Miki 3'. Here, we describe the development of this population, which we named as multiple derivative lines (MDLs), and demonstrated its suitability for durum wheat breeding. We genotyped the MDL population, the parents, and 43 Sudanese durum wheat cultivars on a Diversity Array Technology sequencing platform. We evaluated days to heading and plant height in Dongola (Sudan) and in Tottori (Japan). The physical map length of the MDL population was 9 939 Mb with an average of 1.4 SNP/Mb. The MDL population had greater diversity than the Sudanese cultivars. We found high gene exchange between the nine wild emmer accessions and the MDL population, indicating that the MDL captured most of the diversity in the wild emmer accessions. Genome-wide association analysis identified three loci for days to heading on chromosomes 1A and 5A in Dongola and one on chromosome 3B in Tottori. For plant height, common genomic loci were found on chromosomes 4A and 4B in both locations, and one genomic locus on chromosome 7B was found only in Dongola. The results revealed that the MDLs are an effective strategy towards harnessing wild emmer wheat diversity for wheat genetic improvement.

2.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673217

RESUMO

Kernel weight and shape-related traits are inherited stably and increase wheat yield. Narrow genetic diversity limits the progress of wheat breeding. Here, we evaluated kernel weight and shape-related traits and applied genome-wide association analysis to a panel of wheat multiple synthetic derivative (MSD) lines. The MSD lines harbored genomic fragments from Aegilops tauschii. These materials were grown under optimum conditions in Japan, as well as under heat and combined heat-drought conditions in Sudan. We aimed to explore useful QTLs for kernel weight and shape-related traits under stress conditions. These can be useful for enhancing yield under stress conditions. MSD lines possessed remarkable genetic variation for all traits under all conditions, and some lines showed better performance than the background parent Norin 61. We identified 82 marker trait associations (MTAs) under the three conditions; most of them originated from the D genome. All of the favorable alleles originated from Ae. tauschii. For the first time, we identified markers on chromosome 5D associated with a candidate gene encoding a RING-type E3 ubiquitin-protein ligase and expected to have a role in regulating wheat seed size. Our study provides important knowledge for the improvement of wheat yield under optimum and stress conditions. The results emphasize the importance of Ae. tauschii as a gene reservoir for wheat breeding.


Assuntos
Aegilops/genética , Resistência à Doença/genética , Melhoramento Vegetal , Sementes , Triticum , Desidratação/genética , Estudo de Associação Genômica Ampla , Sementes/genética , Sementes/metabolismo , Triticum/genética , Triticum/crescimento & desenvolvimento
3.
Plants (Basel) ; 10(2)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499189

RESUMO

Aegilops tauschii, the D-genome donor of bread wheat, is a storehouse of genetic diversity that can be used for wheat improvement. This species consists of two main lineages (TauL1 and TauL2) and one minor lineage (TauL3). Its morpho-physiological diversity is large, with adaptations to a wide ecological range. Identification of allelic diversity in Ae. tauschii is of utmost importance for efficient breeding and widening of the genetic base of wheat. This study aimed at identifying markers or genes associated with morpho-physiological traits in Ae. tauschii, and at understanding the difference in genetic diversity between the two main lineages. We performed genome-wide association studies of 11 morpho-physiological traits of 343 Ae. tauschii accessions representing the entire range of habitats using 34,829 DArTseq markers. We observed a wide range of morpho-physiological variation among all accessions. We identified 23 marker-trait associations (MTAs) in all accessions, 15 specific to TauL1 and eight specific to TauL2, suggesting independent evolution in each lineage. Some of the MTAs could be novel and have not been reported in bread wheat. The markers or genes identified in this study will help reveal the genes controlling the morpho-physiological traits in Ae. tauschii, and thus in bread wheat even if the plant morphology is different.

4.
Biomed Res Int ; 2018: 7082095, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584537

RESUMO

Stay-green trait enhances sorghum adaptation to post-flowering drought. Six stay-green backcross introgression lines (BILs) carrying one or more stay-green QTLs (Stg1-4) and their parents were characterized under non-stress (W100: 100% of soil field capacity (FC)) and two levels of post-flowering drought (W75: 75% FC; W50: 50% FC) in a controlled condition. We aimed to study the response and identify the drought threshold of these QTLs under different levels of post-flowering drought and find traits closely contributing to grain yield (GY) under different drought severity. W50 caused the highest reduction in BILs performance. From W100 to W50, the GY of the recurrent parent reduced by 70%, whereas that of the BILs reduced by only 36%. W75 and W50 induce different behavior/response compared to W100. Harvest index contributed to the GY under the three water regimes. For high GY under drought transpiration rate at the beginning of drought and mid-grain filling was important at W75, whereas it was important at mid-grain filling and late-grain filling at W50. Stay-green trait can be scored simply with the relative number of green leaves/plants under both irrigated and stress environments. QTL pyramiding might not always be necessary to stabilize or increase the GY under post-flowering drought. The stay-green QTLs increase GY under drought by manipulating water utilization depending on drought severity.


Assuntos
Adaptação Fisiológica/genética , Flores/genética , Locos de Características Quantitativas/genética , Adaptação Fisiológica/fisiologia , Cor , Secas , Flores/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Sorghum/genética , Sorghum/fisiologia , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia , Água/metabolismo
5.
Theor Appl Genet ; 131(8): 1615-1626, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29705916

RESUMO

KEY MESSAGE: The multiple synthetic derivatives platform described in this study will provide an opportunity for effective utilization of Aegilops tauschii traits and genes for wheat breeding. Introducing genes from wild relatives is the best option to increase genetic diversity and discover new alleles necessary for wheat improvement. A population harboring genomic fragments from the diploid wheat progenitor Aegilops tauschii Coss. in the background of bread wheat (Triticum aestivum L.) was developed by crossing and backcrossing 43 synthetic wheat lines with the common wheat cultivar Norin 61. We named this population multiple synthetic derivatives (MSD). To validate the suitability of this population for wheat breeding and genetic studies, we randomly selected 400 MSD lines and genotyped them by using Diversity Array Technology sequencing markers. We scored black glume as a qualitative trait and heading time in two environments in Sudan as a quantitative trait. Our results showed high genetic diversity and less recombination which is expected from the nature of the population. Genome-wide association (GWA) analysis showed one QTL at the short arm of chromosome 1D different from those alleles reported previously indicating that black glume in the MSD population is controlled by new allele at the same locus. For heading time, from the two environments, GWA analysis revealed three QTLs on the short arms of chromosomes 2A, 2B and 2D and two on the long arms of chromosomes 5A and 5D. Using the MSD population, which represents the diversity of 43 Ae. tauschii accessions representing most of its natural habitat, QTLs or genes and desired phenotypes (such as drought, heat and salinity tolerance) could be identified and selected for utilization in wheat breeding.


Assuntos
Variação Genética , Melhoramento Vegetal , Poaceae/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Estudos de Associação Genética , Genótipo , Fenótipo
6.
BMC Genet ; 19(1): 18, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587653

RESUMO

BACKGROUND: The tertiary gene pool of bread wheat, to which Leymus racemosus belongs, has remained underutilized due to the current limited genomic resources of the species that constitute it. Continuous enrichment of public databases with useful information regarding these species is, therefore, needed to provide insights on their genome structures and aid successful utilization of their genes to develop improved wheat cultivars for effective management of environmental stresses. RESULTS: We generated de novo DNA and mRNA sequence information of L. racemosus and developed 110 polymorphic PCR-based markers from the data, and to complement the PCR markers, DArT-seq genotyping was applied to develop additional 9990 SNP markers. Approximately 52% of all the markers enabled us to clearly genotype 22 wheat-L. racemosus chromosome introgression lines, and L. racemosus chromosome-specific markers were highly efficient in detailed characterization of the translocation and recombination lines analyzed. A further analysis revealed remarkable transferability of the PCR markers to three other important Triticeae perennial species: L. mollis, Psathyrostachys huashanica and Elymus ciliaris, indicating their suitability for characterizing wheat-alien chromosome introgressions carrying chromosomes of these genomes. CONCLUSION: The efficiency of the markers in characterizing wheat-L. racemosus chromosome introgression lines proves their reliability, and their high transferability further broadens their scope of application. This is the first report on sequencing and development of markers from L. racemosus genome and the application of DArT-seq to develop markers from a perennial wild relative of wheat, marking a paradigm shift from the seeming concentration of the technology on cultivated species. Integration of these markers with appropriate cytogenetic methods would accelerate development and characterization of wheat-alien chromosome introgression lines.


Assuntos
Pão , Cromossomos de Plantas , Melhoramento Vegetal , Poaceae/genética , Triticum/genética , Mapeamento Cromossômico/métodos , Análise Citogenética , Marcadores Genéticos , Análise de Sequência de DNA , Análise de Sequência de RNA
7.
Breed Sci ; 67(3): 248-256, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28744178

RESUMO

Heat stress is detrimental to wheat (Triticum aestivum L.) productivity. In this study, we aimed to select heat-tolerant plants from a multiple synthetic derivatives (MSD) population and evaluate their agronomic and physiological traits. We selected six tolerant plants from the population with the background of the cultivar 'Norin 61' (N61) and established six MNH (MSD population of N61 selected as heat stress-tolerant) lines. We grew these lines with N61 in the field and growth chamber. In the field, we used optimum and late sowings to ensure plant exposure to heat. In the growth chamber, in addition to N61, we used the heat-tolerant cultivars 'Gelenson' and 'Bacanora'. We confirmed that MNH2 and MNH5 lines acquired heat tolerance. These lines had higher photosynthesis and stomata conductance and exhibited no reduction in grain yield and biomass under heat stress compared to N61. We noticed that N61 had relatively good adaptability to heat stress. Our results indicate that the MSD population includes the diversity of Aegilops tauschii and is a promising resource to uncover useful quantitative traits derived from this wild species. Selected lines could be useful for heat stress tolerance breeding.

8.
Breed Sci ; 66(2): 181-90, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27162490

RESUMO

Under the changing climate, early flowering is advantageous to escape terminal heat and drought. Previously during evaluation of 14 chromosome introgression lines (ILs), we found three ILs that flowered a month earlier than their wheat background Chinese Spring (CS). This paper describes the cause of the early flowering in the ILs and provides insight into the evolution of spring wheat from the winter wheat. We used specific molecular markers for Vrn genes to determine its allelic composition. Phenotypic evaluations carried out under field conditions and in a growth chamber. Unlike the winter vrn-A1 allele of CS, the spring Vrn-A1 allele of the ILs had insertions of 222 and 131-bp miniature inverted-repeat transposable element (MITE) in the promoter region. Sequence analysis indicated that the 222-bp insertion is similar to an insertion in the spring genotype, Triple Dirk D. Our results ruled out any possibility of outcrossing or contamination. Without vernalization, Vrn-A1 is highly expressed in the ILs compared to CS. We attribute the early flowering of the ILs to the insertion of the MITE in the promoter of Vrn-A1. The alien chromosome might mediate this insertion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...