Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Clin Nutr ; 109(6): 1724-1737, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31005972

RESUMO

BACKGROUND: Individual differences in human perception of sweetness are partly due to genetics; however, which genes are associated with the perception and the consumption of sweet substances remains unclear. OBJECTIVE: The aim of this study was to verify previous reported associations within genes involved in the peripheral receptor systems (i.e., TAS1R2, TAS1R3, and GNAT3) and reveal novel loci. METHODS: We performed genome-wide association scans (GWASs) of the perceived intensity of 2 sugars (glucose and fructose) and 2 high-potency sweeteners (neohesperidin dihydrochalcone and aspartame) in an Australian adolescent twin sample (n = 1757), and the perceived intensity and sweetness and the liking of sucrose in a US adult twin sample (n = 686). We further performed GWASs of the intake of total sugars (i.e., total grams of all dietary mono- and disaccharides per day) and sweets (i.e., handfuls of candies per day) in the UK Biobank sample (n = ≤174,424 white-British individuals). All participants from the 3 independent samples were of European ancestry. RESULTS: We found a strong association between the intake of total sugars and the single nucleotide polymorphism rs11642841 within the FTO gene on chromosome 16 (P = 3.8 × 10-8) and many suggestive associations (P < 1.0 × 10-5) for each of the sweet perception and intake phenotypes. We showed genetic evidence for the involvement of the brain in both sweet taste perception and sugar intake. There was limited support for the associations with TAS1R2, TAS1R3, and GNAT3 in all 3 European samples. CONCLUSIONS: Our findings indicate that genes additional to those involved in the peripheral receptor system are also associated with the sweet taste perception and intake of sweet-tasting foods. The functional potency of the genetic variants within TAS1R2, TAS1R3, and GNAT3 may be different between ethnic groups and this warrants further investigations.

3.
Nat Genet ; 51(2): 237-244, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643251

RESUMO

Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Fumar/genética , Tabagismo/genética , Feminino , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Risco , Tabaco/efeitos adversos
4.
BMC Genomics ; 19(1): 678, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30223776

RESUMO

BACKGROUND: Human perception of bitter substances is partially genetically determined. Previously we discovered a single nucleotide polymorphism (SNP) within the cluster of bitter taste receptor genes on chromosome 12 that accounts for 5.8% of the variance in the perceived intensity rating of quinine, and we strengthened the classic association between TAS2R38 genotype and the bitterness of propylthiouracil (PROP). Here we performed a genome-wide association study (GWAS) using a 40% larger sample (n = 1999) together with a bivariate approach to detect previously unidentified common variants with small effects on bitter perception. RESULTS: We identified two signals, both with small effects (< 2%), within the bitter taste receptor clusters on chromosomes 7 and 12, which influence the perceived bitterness of denatonium benzoate and sucrose octaacetate respectively. We also provided the first independent replication for an association of caffeine bitterness on chromosome 12. Furthermore, we provided evidence for pleiotropic effects on quinine, caffeine, sucrose octaacetate and denatonium benzoate for the three SNPs on chromosome 12 and the functional importance of the SNPs for denatonium benzoate bitterness. CONCLUSIONS: These findings provide new insights into the genetic architecture of bitter taste and offer a useful starting point for determining the biological pathways linking perception of bitter substances.


Assuntos
Cromossomos Humanos Par 12 , Cromossomos Humanos Par 7 , Estudo de Associação Genômica Ampla , Família Multigênica , Percepção Gustatória/genética , Adolescente , Adulto , Criança , Feminino , Pleiotropia Genética , Genótipo , Humanos , Masculino , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas-G/genética , Papilas Gustativas/metabolismo , Adulto Jovem
5.
Addiction ; 113(11): 2073-2086, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30003630

RESUMO

BACKGROUND AND AIMS: Cannabis is one of the most commonly used substances among adolescents and young adults. Earlier age at cannabis initiation is linked to adverse life outcomes, including multi-substance use and dependence. This study estimated the heritability of age at first cannabis use and identified associations with genetic variants. METHODS: A twin-based heritability analysis using 8055 twins from three cohorts was performed. We then carried out a genome-wide association meta-analysis of age at first cannabis use in a discovery sample of 24 953 individuals from nine European, North American and Australian cohorts, and a replication sample of 3735 individuals. RESULTS: The twin-based heritability for age at first cannabis use was 38% [95% confidence interval (CI) = 19-60%]. Shared and unique environmental factors explained 39% (95% CI = 20-56%) and 22% (95% CI = 16-29%). The genome-wide association meta-analysis identified five single nucleotide polymorphisms (SNPs) on chromosome 16 within the calcium-transporting ATPase gene (ATP2C2) at P < 5E-08. All five SNPs are in high linkage disequilibrium (LD) (r2  > 0.8), with the strongest association at the intronic variant rs1574587 (P = 4.09E-09). Gene-based tests of association identified the ATP2C2 gene on 16q24.1 (P = 1.33e-06). Although the five SNPs and ATP2C2 did not replicate, ATP2C2 has been associated with cocaine dependence in a previous study. ATP2B2, which is a member of the same calcium signalling pathway, has been associated previously with opioid dependence. SNP-based heritability for age at first cannabis use was non-significant. CONCLUSION: Age at cannabis initiation appears to be moderately heritable in western countries, and individual differences in onset can be explained by separate but correlated genetic liabilities. The significant association between age of initiation and ATP2C2 is consistent with the role of calcium signalling mechanisms in substance use disorders.

6.
J Alzheimers Dis ; 64(1): 49-54, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29865051

RESUMO

Cohort studies investigating aging and dementia require APOE genotyping. We compared directly measured APOE genotypes to 'hard-call' genotypes derived from imputing genome-wide genotyping data from a range of platforms using several imputation panels. Older GWAS arrays imputed to 1000 Genomes Project (1KGP) phases and the Haplotype Reference Consortium (HRC) reference panels were able to achieve concordance rates of over 98% with stringent quality control (hard-call-threshold 0.8). However, this resulted in high levels of missingness (>12% with 1KGP and 5% with HRC). With recent GWAS arrays, concordance of 99% could be obtained with relatively lenient QC, resulting in no missingness.

7.
Nat Genet ; 50(5): 668-681, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29700475

RESUMO

Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.

8.
Nat Genet ; 50(5): 652-656, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29662168

RESUMO

Hair color is one of the most recognizable visual traits in European populations and is under strong genetic control. Here we report the results of a genome-wide association study meta-analysis of almost 300,000 participants of European descent. We identified 123 autosomal and one X-chromosome loci significantly associated with hair color; all but 13 are novel. Collectively, single-nucleotide polymorphisms associated with hair color within these loci explain 34.6% of red hair, 24.8% of blond hair, and 26.1% of black hair heritability in the study populations. These results confirm the polygenic nature of complex phenotypes and improve our understanding of melanin pigment metabolism in humans.

9.
J Affect Disord ; 228: 20-25, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29197740

RESUMO

BACKGROUND: Bipolar disorder (BD) is a common and highly heritable disorder of mood. Genome-wide association studies (GWAS) have identified several independent susceptibility loci. In order to extract more biological information from GWAS data, multi-locus approaches represent powerful tools since they utilize knowledge about biological processes to integrate functional sets of genes at strongly to moderately associated loci. METHODS: We conducted gene set enrichment analyses (GSEA) using 2.3 million single-nucleotide polymorphisms, 397 Reactome pathways and 24,025 patients with BD and controls. RNA expression of implicated individual genes and gene sets were examined in post-mortem brains across lifespan. RESULTS: Two pathways showed a significant enrichment after correction for multiple comparisons in the GSEA: GRB2 events in ERBB2 signaling, for which 6 of 21 genes were BD associated (PFDR = 0.0377), and NCAM signaling for neurite out-growth, for which 11 out of 62 genes were BD associated (PFDR = 0.0451). Most pathway genes showed peaks of RNA co-expression during fetal development and infancy and mapped to neocortical areas and parts of the limbic system. LIMITATIONS: Pathway associations were technically reproduced by two methods, although they were not formally replicated in independent samples. Gene expression was explored in controls but not in patients. CONCLUSIONS: Pathway analysis in large GWAS data of BD and follow-up of gene expression patterns in healthy brains provide support for an involvement of neurodevelopmental processes in the etiology of this neuropsychiatric disease. Future studies are required to further evaluate the relevance of the implicated genes on pathway functioning and clinical aspects of BD.


Assuntos
Transtorno Bipolar/genética , Encéfalo/crescimento & desenvolvimento , Proteína Adaptadora GRB2/metabolismo , Receptor ErbB-2/metabolismo , Transdução de Sinais , Algoritmos , Transtorno Bipolar/metabolismo , Transtorno Bipolar/fisiopatologia , Encéfalo/metabolismo , Feminino , Proteína Adaptadora GRB2/genética , Expressão Gênica , Genes erbB-2/fisiologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , RNA/metabolismo
10.
Nat Commun ; 8(1): 910, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030599

RESUMO

Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan.


Assuntos
Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Estilo de Vida , Lipoproteína(a)/genética , Longevidade/genética , Alelos , Índice de Massa Corporal , Doença das Coronárias/sangue , Doença das Coronárias/etiologia , Educação , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Resistência à Insulina/genética , Lipoproteínas HDL/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Obesidade/complicações , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Fumar/efeitos adversos , Fatores Socioeconômicos
11.
J Alzheimers Dis ; 59(1): 85-99, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28582860

RESUMO

Iron deposition in the brain is a prominent feature of Alzheimer's disease (AD). Recently, peripheral iron measures have also been shown to be associated with AD status. However, it is not known whether these associations are causal: do elevated or depleted iron levels throughout life have an effect on AD risk? We evaluate the effects of peripheral iron on AD risk using a genetic profile score approach by testing whether variants affecting iron, transferrin, or ferritin levels selected from GWAS meta-analysis of approximately 24,000 individuals are also associated with AD risk in an independent case-control cohort (n∼10,000). Conversely, we test whether AD risk variants from a GWAS meta-analysis of approximately 54,000 account for any variance in iron measures (n∼9,000). We do not identify a genetic relationship, suggesting that peripheral iron is not causal in the initiation of AD pathology.


Assuntos
Doença de Alzheimer/sangue , Ferritinas/sangue , Ferro/sangue , Transferrina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Estudos de Coortes , Planejamento em Saúde Comunitária , Feminino , Estudos de Associação Genética/estatística & dados numéricos , Humanos , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética
12.
J Invest Dermatol ; 137(9): 1887-1894, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28502801

RESUMO

Loss of fine skin patterning is a sign of both aging and photoaging. Studies investigating the genetic contribution to skin patterning offer an opportunity to better understand a trait that influences both physical appearance and risk of keratinocyte skin cancer. We undertook a meta-analysis of genome-wide association studies of a measure of skin pattern (microtopography score) damage in 1,671 twin pairs and 1,745 singletons (N = 5,087) drawn from three independent cohorts. We identified that rs185146 near SLC45A2 is associated with a skin aging trait at genome-wide significance (P = 4.1 × 10-9); to our knowledge this is previously unreported. We also confirm previously identified loci, rs12203592 near IRF4 (P = 8.8 × 10-13) and rs4268748 near MC1R (P = 1.2 × 10-15). At all three loci we highlight putative functionally relevant SNPs. There are a number of red hair/low pigmentation alleles of MC1R; we found that together these MC1R alleles explained 4.1% of variance in skin pattern damage. We also show that skin aging and reported experience of sunburns was proportional to the degree of penetrance for red hair of alleles of MC1R. Our work has uncovered genetic contributions to skin aging and confirmed previous findings, showing that pigmentation is a critical determinant of skin aging.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Fatores Reguladores de Interferon/genética , Envelhecimento da Pele/genética , Adolescente , Adulto , Idoso , Alelos , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Valores de Referência , Papel (figurativo) , Pigmentação da Pele/genética
13.
PLoS One ; 12(2): e0171595, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28166306

RESUMO

Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of mania and depression. BD shows substantial clinical and genetic overlap with other psychiatric disorders, in particular schizophrenia (SCZ). The genes underlying this etiological overlap remain largely unknown. A recent SCZ genome wide association study (GWAS) by the Psychiatric Genomics Consortium identified 128 independent genome-wide significant single nucleotide polymorphisms (SNPs). The present study investigated whether these SCZ-associated SNPs also contribute to BD development through the performance of association testing in a large BD GWAS dataset (9747 patients, 14278 controls). After re-imputation and correction for sample overlap, 22 of 107 investigated SCZ SNPs showed nominal association with BD. The number of shared SCZ-BD SNPs was significantly higher than expected (p = 1.46x10-8). This provides further evidence that SCZ-associated loci contribute to the development of BD. Two SNPs remained significant after Bonferroni correction. The most strongly associated SNP was located near TRANK1, which is a reported genome-wide significant risk gene for BD. Pathway analyses for all shared SCZ-BD SNPs revealed 25 nominally enriched gene-sets, which showed partial overlap in terms of the underlying genes. The enriched gene-sets included calcium- and glutamate signaling, neuropathic pain signaling in dorsal horn neurons, and calmodulin binding. The present data provide further insights into shared risk loci and disease-associated pathways for BD and SCZ. This may suggest new research directions for the treatment and prevention of these two major psychiatric disorders.


Assuntos
Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Predisposição Genética para Doença , Locos de Características Quantitativas , Esquizofrenia/genética , Esquizofrenia/metabolismo , Transdução de Sinais , Ligação Genética , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Risco
14.
Biol Psychiatry ; 82(5): 322-329, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049566

RESUMO

BACKGROUND: The genetics of depression has been explored in genome-wide association studies that focused on either major depressive disorder or depressive symptoms with mostly negative findings. A broad depression phenotype including both phenotypes has not been tested previously using a genome-wide association approach. We aimed to identify genetic polymorphisms significantly associated with a broad phenotype from depressive symptoms to major depressive disorder. METHODS: We analyzed two prior studies of 70,017 participants of European ancestry from general and clinical populations in the discovery stage. We performed a replication meta-analysis of 28,328 participants. Single nucleotide polymorphism (SNP)-based heritability and genetic correlations were calculated using linkage disequilibrium score regression. Discovery and replication analyses were performed using a p-value-based meta-analysis. Lifetime major depressive disorder and depressive symptom scores were used as the outcome measures. RESULTS: The SNP-based heritability of major depressive disorder was 0.21 (SE = 0.02), the SNP-based heritability of depressive symptoms was 0.04 (SE = 0.01), and their genetic correlation was 1.001 (SE = 0.2). We found one genome-wide significant locus related to the broad depression phenotype (rs9825823, chromosome 3: 61,082,153, p = 8.2 × 10-9) located in an intron of the FHIT gene. We replicated this SNP in independent samples (p = .02) and the overall meta-analysis of the discovery and replication cohorts (1.0 × 10-9). CONCLUSIONS: This large study identified a new locus for depression. Our results support a continuum between depressive symptoms and major depressive disorder. A phenotypically more inclusive approach may help to achieve the large sample sizes needed to detect susceptibility loci for depression.


Assuntos
Depressão/genética , Transtorno Depressivo/genética , Loci Gênicos , Predisposição Genética para Doença , Hidrolases Anidrido Ácido/genética , Grupo com Ancestrais do Continente Europeu/genética , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Neoplasias/genética , Fenótipo
15.
Behav Genet ; 47(1): 3-10, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27590903

RESUMO

Non-suicidal and suicidal self-injury are very destructive, yet surprisingly common behaviours. Depressed mood is a major risk factor for non-suicidal self-injury (NSSI), suicidal ideation and suicide attempts. We conducted a genetic risk prediction study to examine the polygenic overlap of depressive symptoms with lifetime NSSI, suicidal ideation, and suicide attempts in a sample of 6237 Australian adult twins and their family members (3740 females, mean age = 42.4 years). Polygenic risk scores for depressive symptoms significantly predicted suicidal ideation, and some predictive ability was found for suicide attempts; the polygenic risk scores explained a significant amount of variance in suicidal ideation (lowest p = 0.008, explained variance ranging from 0.10 to 0.16 %) and, less consistently, in suicide attempts (lowest p = 0.04, explained variance ranging from 0.12 to 0.23 %). Polygenic risk scores did not significantly predict NSSI. Results highlight that individuals genetically predisposed to depression are also more likely to experience suicidal ideation/behaviour, whereas we found no evidence that this is also the case for NSSI.


Assuntos
Depressão/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Comportamento Autodestrutivo/genética , Ideação Suicida , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Fatores de Risco , Adulto Jovem
16.
Biol Psychiatry ; 81(4): 325-335, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27519822

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a disabling mood disorder, and despite a known heritable component, a large meta-analysis of genome-wide association studies revealed no replicable genetic risk variants. Given prior evidence of heterogeneity by age at onset in MDD, we tested whether genome-wide significant risk variants for MDD could be identified in cases subdivided by age at onset. METHODS: Discovery case-control genome-wide association studies were performed where cases were stratified using increasing/decreasing age-at-onset cutoffs; significant single nucleotide polymorphisms were tested in nine independent replication samples, giving a total sample of 22,158 cases and 133,749 control subjects for subsetting. Polygenic score analysis was used to examine whether differences in shared genetic risk exists between earlier and adult-onset MDD with commonly comorbid disorders of schizophrenia, bipolar disorder, Alzheimer's disease, and coronary artery disease. RESULTS: We identified one replicated genome-wide significant locus associated with adult-onset (>27 years) MDD (rs7647854, odds ratio: 1.16, 95% confidence interval: 1.11-1.21, p = 5.2 × 10-11). Using polygenic score analyses, we show that earlier-onset MDD is genetically more similar to schizophrenia and bipolar disorder than adult-onset MDD. CONCLUSIONS: We demonstrate that using additional phenotype data previously collected by genetic studies to tackle phenotypic heterogeneity in MDD can successfully lead to the discovery of genetic risk factor despite reduced sample size. Furthermore, our results suggest that the genetic susceptibility to MDD differs between adult- and earlier-onset MDD, with earlier-onset cases having a greater genetic overlap with schizophrenia and bipolar disorder.


Assuntos
Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Adulto , Idade de Início , Transtorno Bipolar/epidemiologia , Transtorno Bipolar/genética , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Herança Multifatorial , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Adulto Jovem
17.
Am J Hum Genet ; 98(5): 898-908, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27132594

RESUMO

Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.


Assuntos
Fertilidade/genética , Variação Genética/genética , Síndrome do Ovário Policístico/genética , Gêmeos Dizigóticos/genética , Ansiedade/genética , Estudos de Casos e Controles , Depressão/genética , Família , Feminino , Hormônio Foliculoestimulante/sangue , Estudo de Associação Genômica Ampla , Humanos , Estudos Longitudinais , Masculino , Mães , Síndrome do Ovário Policístico/sangue , Gravidez
18.
Br J Psychiatry ; 208(2): 128-37, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26338991

RESUMO

BACKGROUND: Bipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain. AIMS: We sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL. METHOD: To detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 5775) and cognitive performance (n = 342) among healthy individuals. RESULTS: Integrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P = 5.85 × 10(-5)). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P = 3.54 × 10(-8)). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals. CONCLUSIONS: Our findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder.


Assuntos
Transtorno Bipolar/genética , Cognição , Hipocampo/patologia , Polimorfismo de Nucleotídeo Único , Idoso , Teorema de Bayes , Estudos de Casos e Controles , Cromossomos Humanos Par 22 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Modelos Logísticos
19.
Behav Genet ; 46(2): 170-82, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26362575

RESUMO

Extraversion is a relatively stable and heritable personality trait associated with numerous psychosocial, lifestyle and health outcomes. Despite its substantial heritability, no genetic variants have been detected in previous genome-wide association (GWA) studies, which may be due to relatively small sample sizes of those studies. Here, we report on a large meta-analysis of GWA studies for extraversion in 63,030 subjects in 29 cohorts. Extraversion item data from multiple personality inventories were harmonized across inventories and cohorts. No genome-wide significant associations were found at the single nucleotide polymorphism (SNP) level but there was one significant hit at the gene level for a long non-coding RNA site (LOC101928162). Genome-wide complex trait analysis in two large cohorts showed that the additive variance explained by common SNPs was not significantly different from zero, but polygenic risk scores, weighted using linkage information, significantly predicted extraversion scores in an independent cohort. These results show that extraversion is a highly polygenic personality trait, with an architecture possibly different from other complex human traits, including other personality traits. Future studies are required to further determine which genetic variants, by what modes of gene action, constitute the heritable nature of extraversion.


Assuntos
Extroversão (Psicologia) , Estudo de Associação Genômica Ampla , Personalidade/genética , Estudos de Coortes , Humanos , Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
20.
JAMA Psychiatry ; 72(7): 642-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25993607

RESUMO

IMPORTANCE: Neuroticism is a pervasive risk factor for psychiatric conditions. It genetically overlaps with major depressive disorder (MDD) and is therefore an important phenotype for psychiatric genetics. The Genetics of Personality Consortium has created a resource for genome-wide association analyses of personality traits in more than 63,000 participants (including MDD cases). OBJECTIVES: To identify genetic variants associated with neuroticism by performing a meta-analysis of genome-wide association results based on 1000 Genomes imputation; to evaluate whether common genetic variants as assessed by single-nucleotide polymorphisms (SNPs) explain variation in neuroticism by estimating SNP-based heritability; and to examine whether SNPs that predict neuroticism also predict MDD. DESIGN, SETTING, AND PARTICIPANTS: Genome-wide association meta-analysis of 30 cohorts with genome-wide genotype, personality, and MDD data from the Genetics of Personality Consortium. The study included 63,661 participants from 29 discovery cohorts and 9786 participants from a replication cohort. Participants came from Europe, the United States, or Australia. Analyses were conducted between 2012 and 2014. MAIN OUTCOMES AND MEASURES: Neuroticism scores harmonized across all 29 discovery cohorts by item response theory analysis, and clinical MDD case-control status in 2 of the cohorts. RESULTS: A genome-wide significant SNP was found on 3p14 in MAGI1 (rs35855737; P = 9.26 × 10-9 in the discovery meta-analysis). This association was not replicated (P = .32), but the SNP was still genome-wide significant in the meta-analysis of all 30 cohorts (P = 2.38 × 10-8). Common genetic variants explain 15% of the variance in neuroticism. Polygenic scores based on the meta-analysis of neuroticism in 27 cohorts significantly predicted neuroticism (1.09 × 10-12 < P < .05) and MDD (4.02 × 10-9 < P < .05) in the 2 other cohorts. CONCLUSIONS AND RELEVANCE: This study identifies a novel locus for neuroticism. The variant is located in a known gene that has been associated with bipolar disorder and schizophrenia in previous studies. In addition, the study shows that neuroticism is influenced by many genetic variants of small effect that are either common or tagged by common variants. These genetic variants also influence MDD. Future studies should confirm the role of the MAGI1 locus for neuroticism and further investigate the association of MAGI1 and the polygenic association to a range of other psychiatric disorders that are phenotypically correlated with neuroticism.


Assuntos
Transtornos de Ansiedade/genética , Moléculas de Adesão Celular Neuronais/genética , Transtorno Depressivo Maior/genética , Personalidade/genética , Transtornos de Ansiedade/psicologia , Transtorno Depressivo Maior/psicologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Herança Multifatorial , Neuroticismo , Polimorfismo de Nucleotídeo Único , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA