Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 7(1): 40-5, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26819663

RESUMO

Efforts to identify a potent, reversible, nonsteroidal CYP17A1 lyase inhibitor with good selectivity over CYP17A1 hydroxylase and CYPs 11B1 and 21A2 for the treatment of castration-resistant prostate cancer (CRPC) culminated in the discovery of BMS-351 (compound 18), a pyridyl biaryl benzimidazole with an excellent in vivo profile. Biological evaluation of BMS-351 at a dose of 1.5 mg in castrated cynomolgus monkeys revealed a remarkable reduction in testosterone levels with minimal glucocorticoid and mineralcorticoid perturbation. Based on a favorable profile, BMS-351 was selected as a candidate for further preclinical evaluation.

2.
ACS Med Chem Lett ; 6(8): 908-12, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26288692

RESUMO

BMS-641988 (23) is a novel, nonsteroidal androgen receptor antagonist designed for the treatment of prostate cancer. The compound has high binding affinity for the AR and acts as a functional antagonist in vitro. BMS-641988 is efficacious in multiple human prostate cancer xenograft models, including CWR22-BMSLD1 where it displays superior efficacy relative to bicalutamide. Based on its promising preclinical profile, BMS-641988 was selected for clinical development.

3.
Exp Cell Res ; 338(2): 251-60, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26302264

RESUMO

Cellular levels of inhibitor of apoptosis (IAP) proteins are elevated in multiple human cancers and their activities often play a part in promoting cancer cell survival by blocking apoptotic pathways, controlling signal transduction pathways and contributing to resistance. These proteins function through interactions of their BIR (baculoviral IAP repeat) protein domains with pathway components and these interactions are endogenously antagonized by Smac/Diablo (second mitochondrial activator of caspases/direct IAP binding protein with low isoelectric point). This report describes development of synthetic smac mimetics (SM) and compares their binding, antiproliferative and anti-tumor activities. All dimeric antagonists inhibit in vitro smac tetrapeptide binding to recombinant IAP proteins, rescue IAP-bound caspase-3 activity and show anti-proliferative activity against human A875 melanoma cells. One heterodimeric SM, SM3, binds tightly to IAP proteins in vitro and slowly dissociates (greater than two hours) from these protein complexes compared to the other antagonists. In addition, in vitro SM anti-proliferation potency is influenced by ABCB1 transporter (ATP-binding cassette, sub-family B; MDR1, P-gp) activities and one antagonist, SM5, does not appear to be an ABCB1 efflux pump substrate. All dimeric smac mimetics inhibit the growth of human melanoma A875 tumors implanted in athymic mice at well-tolerated doses. One antagonist, SM4, shows broad spectrum in vivo anti-tumor activity and modulates known pharmacodynamic markers of IAP antagonism. These data taken together demonstrate the range of diverse dimeric IAP antagonist activities and supports their potential as anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Transporte Biológico/efeitos dos fármacos , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Mitocondriais/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Biomimética/métodos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Células HCT116 , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 25(14): 2809-12, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25987372
5.
Exp Cell Res ; 332(2): 267-77, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25486070

RESUMO

Cancer cell survival is frequently dependent on the elevated levels of members of the Bcl-2 family of prosurvival proteins that bind to and inactivate BH3-domain pro-apoptotic cellular proteins. Small molecules that inhibit the protein-protein interactions between prosurvival and proapoptotic Bcl-2 family members (so-called "BH3 mimetics") have a potential therapeutic value, as indicated by clinical findings obtained with ABT-263 (navitoclax), a Bcl-2/Bcl-xL antagonist, and more recently with GDC-0199/ABT-199, a more selective antagonist of Bcl-2. Here, we report study results of the functional role of the prosurvival protein Mcl-1 against a panel of solid cancer cell lines representative of different tumor types. We observed silencing of Mcl-1 expression by small interfering RNAs (siRNAs) significantly reduced viability and induced apoptosis in almost 30% of cell lines tested, including lung and breast adenocarcinoma, as well as glioblastoma derived lines. Most importantly, we provide a mechanistic basis for this sensitivity by showing antagonism of Mcl-1 function with specific BH3 peptides against isolated mitochondria induces Bak oligomerization and cytochrome c release, therefore demonstrating that mitochondria from Mcl-1-sensitive cells depend on Mcl-1 for their integrity and that antagonizing Mcl-1 function is sufficient to induce apoptosis. Thus, our results lend further support for considering Mcl-1 as a therapeutic target in a number of solid cancers and support the rationale for development of small molecule BH3-mimetics antagonists of this protein.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Mitocôndrias/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
6.
Exp Hematol ; 40(9): 715-723.e6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22613471

RESUMO

Malignant transformation of normal hematopoietic progenitors is a multistep process that likely requires interaction between collaborating oncogenic signals at critical junctures. For instance, the MLL-AF9 fusion oncogene is thought to contribute to myeloid leukemogenesis by driving a hematopoietic stem cell-like "self-renewal" gene expression signature in committed myeloid progenitors. In addition, insulin-like growth factor (IGF) signaling has been implicated in self-renewal/pluripotency in hematopoietic and embryonic stem cell contexts and supports cell growth/survival by activation of downstream pathways, including phosphatidylinositol 3-kinase/Akt and Ras/Raf/extracellular signal-regulated kinase. We hypothesized that IGF signaling could be an important contributor in the process of cellular transformation and/or clonal propagation. Utilizing an MLL-AF9 mouse bone marrow transplantation model of acute myelogenous leukemia, we discovered that committed myeloid progenitor cells with genetically reduced levels of IGF1R were less susceptible to leukemogenic transformation due, at least in part, to a cell-autonomous defect in clonogenic activity. Rather unexpectedly, genetic deletion of IGF1R by inducible Cre recombinase had no effect on growth/survival of established leukemia cells. These findings suggest that IGF1R signaling contributes to transformation of normal myeloid progenitor cells, but is not required for propagation of the leukemic clone once it has become established. We also show that treatment of mouse MLL-AF9 acute myelogenous leukemia cells with BMS-536924, an IGF1R/insulin receptor-selective tyrosine kinase inhibitor, blocked cell growth, suggesting its efficacy in this model may be due to inhibition of insulin receptor and/or related tyrosine kinases, and raising the possibility that similar IGF1R inhibitors in clinical development may be acting through alternate/related pathways.


Assuntos
Transformação Celular Neoplásica/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Fusão Oncogênica/genética , Receptor IGF Tipo 1/genética , Animais , Benzimidazóis/farmacologia , Western Blotting , Transplante de Medula Óssea , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Fusão Oncogênica/metabolismo , Pirazóis/farmacologia , Piridonas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/genética , Análise de Sobrevida , Triazinas/farmacologia
7.
Clin Cancer Res ; 18(6): 1808-17, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22287600

RESUMO

PURPOSE: To improve the significance of insulin-like growth factor-binding protein 5 (IGFBP-5) as a prognostic and potentially predictive marker in patients with breast cancer. EXPERIMENTAL DESIGN: Increased IGFBP-5 expression was identified in MCF-7 cells resistant (MCF-7R4) to the IGF-1R/insulin receptor (InsR) inhibitor BMS-536924 and its role examined by targeted knockdown and overexpression in multiple experimental models. Protein expression of IGFBP-5 was measured by immunohistochemistry in a cohort of 76 patients with breast cancer to examine correlative associations with invasive tumor fraction and outcome. The use of a combined IGFBP-5/IGFBP-4 (BPR) expression ratio was applied to predict anti-IGF-1R/InsR response in a panel of breast cancer lines and outcome in multiple breast tumor cohorts. RESULTS: IGFBP-5 knockdown decreased BMS-536924 resistance in MCF-7R4 cells, whereas IGFBP-5 overexpression in MCF-7 cells conferred resistance. When compared with pathologically normal reduction mammoplasty tissue, IGFBP-5 expression levels were upregulated in both invasive and histologically normal adjacent breast cancer tissue. In both univariate and multivariate modeling, metastasis-free survival, recurrence free survival (RFS), and overall survival (OS) were significantly associated with high IGFBP-5 expression. Prognostic power of IGFBP-5 was further increased with the addition of IGFBP-4 where tumors were ranked based upon IGFBP-5/IGFBP-4 expression ratio (BPR). Multiple breast cancer cohorts confirm that BPR (high vs. low) was a strong predictor of RFS and OS. CONCLUSION: IGFBP-5 expression is a marker of poor outcome in patients with breast cancer. An IGFBP-5/IGFBP-4 expression ratio may serve as a surrogate biomarker of IGF pathway activation and predict sensitivity to anti-IGF-1R targeting.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzimidazóis/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Prognóstico , Piridonas/uso terapêutico
8.
PLoS One ; 7(12): e51189, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300537

RESUMO

BACKGROUND: Treatment of metastatic prostate cancer (PCa) with single agents has shown only modest efficacy. We hypothesized dual inhibition of different pathways in PCa results in improved tumor inhibition. The Src family kinases (SFK) and insulin-like growth factor-1 (IGF-1) signaling axes are aberrantly activated in both primary PCa and bone metastases and regulate distinct and overlapping functions in PCa progression. We examined the antitumor effects of combined inhibition of these pathways. MATERIALS AND METHODS: Src andIGF-1 receptor (IGF-1R) inhibition was achieved in vitro by short hairpin (sh)RNA and in vitro and in vivo by small molecule inhibitors (dasatinib and BMS-754807, against SFK and IGF-1R/Insulin Receptor(IR), respectively). RESULTS: In vitro, inhibition of IGF-1 signaling affected cell survival and proliferation. SFK blockade alone had modest effects on proliferation, but significantly enhanced the IGF-1R blockade. These findings correlated with a robust inhibition of IGF-1-induced Akt1 phophorylation by dasatinib, whereas Akt2 phosphorylation was SFK independent and only inhibited by BMS-754807. Thus, complete inhibition of both Akt genes, not seen by either drug alone, is likely a major mechanism for the decreased survival of PCa cells. Furthermore, dasatinib and BMS-754807 inhibited in vivo growth of the primary human xenograft MDA PCa 133, with corresponding inhibition of Akt in tumors. Also, both orthotopic and intratibial tumor growth of PC-3 cells were more potently inhibited by dual SFK and IGF-1R/IR blockade compared to either pathway alone, with a corresponding decrease in bone turnover markers. CONCLUSIONS: Dual IGF-1R/IR and SFK inhibition may be a rational therapeutic approach in PCa by blocking both independent and complementary processes critical to tumor growth.


Assuntos
Apoptose/efeitos dos fármacos , Doenças Ósseas/prevenção & controle , Neoplasias da Próstata/prevenção & controle , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/antagonistas & inibidores , Animais , Western Blotting , Doenças Ósseas/metabolismo , Doenças Ósseas/patologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dasatinibe , Quimioterapia Combinada , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Nus , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Tiazóis/farmacologia , Triazinas/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
9.
Bioorg Med Chem ; 20(6): 1961-72, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22137930

RESUMO

Therapeutic development of a targeted agent involves a series of decisions over additional activities that may be ignored, eliminated or pursued. This paper details the concurrent application of two methods that provide a spectrum of information about the biological activity of a compound: biochemical profiling on a large panel of kinase assays and transcriptional profiling of mRNA responses. Our mRNA profiling studies used a full dose range, identifying subsets of transcriptional responses with differing EC(50)s which may reflect distinct targets. Profiling data allowed prioritization for validation in xenograft models, generated testable hypotheses for active compounds, and informed decisions on the general utility of the series.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Quinase 9 Dependente de Ciclina/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Receptor IGF Tipo 1/genética , Triagem
10.
Cancer Res ; 71(24): 7597-607, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22042792

RESUMO

Insulin-like growth factor (IGF) signaling has been implicated in the resistance to hormonal therapy in breast cancer. Using a model of postmenopausal, estrogen-dependent breast cancer, we investigated the antitumor effects of the dual IGF-1R/InsR tyrosine kinase inhibitor BMS-754807 alone and in combination with letrozole or tamoxifen. BMS-754807 exhibited antiproliferative effects in vitro that synergized strongly in combination with letrozole or 4-hydroxytamoxifen and fulvestrant. Similarly, combined treatment of BMS-754807 with either tamoxifen or letrozole in vivo elicited tumor regressions not achieved by single-agent therapy. Notably, hormonal therapy enhanced the inhibition of IGF-1R/InsR without major side effects in animals. Microarray expression analysis revealed downregulation of cell-cycle control and survival pathways and upregulation of erbB in response to BMS-754807 plus hormonal therapy, particularly tamoxifen. Overall, these results offer a preclinical proof-of-concept for BMS-754807 as an antitumor agent in combination with hormonal therapies in hormone-sensitive breast cancer. Cooperative cell-cycle arrest, decreased proliferation, and enhanced promotion of apoptosis may contribute to antitumor effects to be gauged in future clinical investigations justified by our findings.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Pirazóis/farmacologia , Triazinas/farmacologia , Animais , Antineoplásicos Hormonais/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Estradiol/administração & dosagem , Estradiol/análogos & derivados , Estradiol/farmacologia , Estrogênios/metabolismo , Feminino , Fulvestranto , Perfilação da Expressão Gênica , Humanos , Letrozol , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nitrilos/administração & dosagem , Nitrilos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Tamoxifeno/administração & dosagem , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Triazóis/administração & dosagem , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Endocr Relat Cancer ; 18(6): 699-709, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21946410

RESUMO

Epidemiologic and experimental evidence suggest that a subset of breast cancer is insulin responsive, but it is unclear whether safe and effective therapies that target the insulin receptor (IR), which is homologous to oncogenes of the tyrosine kinase class, can be developed. We demonstrate that both pharmacologic inhibition of IR family tyrosine kinase activity and insulin deficiency have anti-neoplastic activity in a model of insulin-responsive breast cancer. Unexpectedly, in contrast to insulin deficiency, pharmacologic IR family inhibition does not lead to significant hyperglycemia and is well tolerated. We show that pharmacokinetic factors explain the tolerability of receptor inhibition relative to insulin deficiency, as the small molecule receptor kinase inhibitor BMS-536924 does not accumulate in muscle at levels sufficient to block insulin-stimulated glucose uptake. Metformin, which lowers insulin levels only in settings of hyperinsulinemia, had minimal activity in this normoinsulinemic model. These findings highlight the importance of tissue-specific drug accumulation as a determinant of efficacy and toxicity of tyrosine kinase inhibitors and suggest that therapeutic targeting of the IR family for cancer treatment is practical.


Assuntos
Aloxano/efeitos adversos , Benzimidazóis/efeitos adversos , Benzimidazóis/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Carcinoma/tratamento farmacológico , Resistência à Insulina , Piridonas/efeitos adversos , Piridonas/uso terapêutico , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzimidazóis/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Resistência à Insulina/fisiologia , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Metformina/efeitos adversos , Metformina/uso terapêutico , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Resultado do Tratamento
12.
J Exp Med ; 208(9): 1809-22, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21807868

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of Notch1 and PI3K-Akt pathways. Although mutations that activate PI3K-Akt signaling have previously been identified, the relative contribution of growth factor-dependent activation is unclear. We show here that pharmacologic inhibition or genetic deletion of insulin-like growth factor 1 receptor (IGF1R) blocks the growth and viability of T-ALL cells, whereas moderate diminution of IGF1R signaling compromises leukemia-initiating cell (LIC) activity as defined by transplantability in syngeneic/congenic secondary recipients. Furthermore, IGF1R is a Notch1 target, and Notch1 signaling is required to maintain IGF1R expression at high levels in T-ALL cells. These findings suggest effects of Notch on LIC activity may be mediated in part by enhancing the responsiveness of T-ALL cells to ambient growth factors, and provide strong rationale for use of IGF1R inhibitors to improve initial response to therapy and to achieve long-term cure of patients with T-ALL.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor IGF Tipo 1/biossíntese , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptor IGF Tipo 1/genética , Receptor Notch1/genética
14.
Mol Cancer Ther ; 10(1): 117-25, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21220496

RESUMO

Preclinical investigations have identified insulin-like growth factor (IGF) signaling as a key mechanism for cancer growth and resistance to clinically useful therapies in multiple tumor types including breast cancer. Thus, agents targeting and blocking IGF signaling have promise in the treatment of solid tumors. To identify possible mechanisms of resistance to blocking the IGF pathway, we generated a cell line that was resistant to the IGF-1R/InsR benzimidazole inhibitors, BMS-554417 and BMS-536924, and compared expression profiles of the parental and resistant cells lines using Affymetrix GeneChip Human Genome U133 arrays. Compared with MCF-7 cells, breast cancer resistance protein (BCRP) expression was increased 9-fold in MCF-7R4, which was confirmed by immunoblotting and was highly statistically significant (P = 7.13E-09). BCRP was also upregulated in an independently derived resistant cell line, MCF-7 924R. MCF-7R4 cells had significantly lower intracellular accumulation of BMS-536924 compared with MCF-7 cells. Expression of BCRP in MCF-7 cells was sufficient to reduce sensitivity to BMS-536924. Furthermore, knockdown of BCRP in MCF-7R4 cells resensitized cells to BMS-536924. Four cell lines selected for resistance to the pyrrolotriazine IGF-1R/InsR inhibitor, BMS-754807, did not have upregulation of BCRP. These data suggest that benzimidazole IGF-1R/InsR inhibitors may select for upregulation and be effluxed by the ATP-binding cassette transporter, BCRP, contributing to resistance. However, pyrrolotriazine IGF-1R/InsR inhibitors do not appear to be affected by this resistance mechanism.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Benzimidazóis/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteínas de Neoplasias/metabolismo , Piridonas/farmacocinética , Receptores de Somatomedina/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/genética , Benzimidazóis/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Piridonas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
MAbs ; 3(1): 38-48, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21099371

RESUMO

Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10 ( 13) Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 µM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC 50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.


Assuntos
Receptores ErbB/antagonistas & inibidores , Fibronectinas/química , Fragmentos de Peptídeos/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Feminino , Humanos , Immunoblotting , Cinética , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Panitumumabe , Fragmentos de Peptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 17(8): 2314-27, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21177763

RESUMO

PURPOSE: We previously reported an insulin-like growth factor (IGF) gene expression signature, based on genes induced or repressed by IGF-I, which correlated with poor prognosis in breast cancer. We tested whether the IGF signature was affected by anti-IGF-I receptor (IGF-IR) inhibitors and whether the IGF signature correlated with response to a dual anti-IGF-IR/insulin receptor (InsR) inhibitor, BMS-754807. EXPERIMENTAL DESIGN: An IGF gene expression signature was examined in human breast tumors and cell lines and changes were noted following treatment of cell lines or xenografts with anti-IGF-IR antibodies or tyrosine kinase inhibitors. Sensitivity of cells to BMS-754807 was correlated with levels of the IGF signature. Human primary tumorgrafts were analyzed for the IGF signature and IGF-IR levels and activity, and MC1 tumorgrafts were treated with BMS-754807 and chemotherapy. RESULTS: The IGF gene expression signature was reversed in three different models (cancer cell lines or xenografts) treated with three different anti-IGF-IR therapies. The IGF signature was present in triple-negative breast cancers (TNBC) and TNBC cell lines, which were especially sensitive to BMS-754807, and sensitivity was significantly correlated to the expression of the IGF gene signature. The TNBC primary human tumorgraft MC1 showed high levels of both expression and activity of IGF-IR and IGF gene signature score. Treatment of MC1 with BMS-754807 showed growth inhibition and, in combination with docetaxel, tumor regression occurred until no tumor was palpable. Regression was associated with reduced proliferation, increased apoptosis, and mitotic catastrophe. CONCLUSIONS: These studies provide a clear biological rationale to test anti-IGF-IR/InsR therapy in combination with chemotherapy in patients with TNBC.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Pirazóis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Triazinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Análise por Conglomerados , Docetaxel , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células NIH 3T3 , Pirazóis/administração & dosagem , Receptor ErbB-2/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores Estrogênicos/metabolismo , Receptores de Progesterona/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Taxoides/administração & dosagem , Taxoides/farmacologia , Triazinas/administração & dosagem
17.
Cancer Res ; 71(3): 1060-70, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21148487

RESUMO

The insulin-like growth factor (IGF) 1 receptor (IGF1R) is an important therapeutic target under study in many cancers. Here, we describe a breast cancer model based on expression of the ETV6-NTRK3 (EN) chimeric tyrosine kinase that suggests novel therapeutic applications of IGF1R inhibitors in secretory breast cancers. Originally discovered in congenital fibrosarcomas with t(12;15) translocations, EN was identified subsequently in secretory breast carcinoma (SBC) which represent a variant of invasive ductal carcinoma. Because fibroblast transformation by EN requires the IGF1R axis, we hypothesized a similar dependency may exist in mammary cells and, if so, that IGF1R inhibitors might be useful to block EN-driven breast oncogenesis. In this study, we analyzed EN expressing murine and human mammary epithelial cell lines for transformation properties. Various IGF1R signaling inhibitors, including the dual specificity IGF1R/insulin receptor (INSR) inhibitor BMS-536924, were then tested for effects on three-dimensional Matrigel cell growth, migration, and tumor formation. We found that EN expression increased acinar size and luminal filling in Matrigel cultures and promoted orthotopic tumor growth in mice. Tumors were well differentiated and nonmetastatic, similar to human SBC. The known EN effector pathway, PI3K-Akt, was activated in an IGF1- or insulin-dependent manner. BMS-536924 blocked EN transformation in vitro, whereas BMS-754807, another IGIFR/INSR kinase inhibitor currently in clinical trials, significantly reduced tumor growth in vivo. Importantly, EN model systems mimic the clinical phenotype observed in human SBC. Moreover, EN has a strict requirement for IGF1R or INSR in breast cell transformation. Thus, our findings strongly encourage the evaluation of IGF1R/INSR inhibitors to treat EN-driven breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Fusão Oncogênica/biossíntese , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Animais , Benzimidazóis/farmacologia , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal , Humanos , Proteínas Substratos do Receptor de Insulina/metabolismo , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular , Proteína Oncogênica v-akt/metabolismo , Piridonas/farmacologia , Transdução de Sinais , Transplante Heterólogo
18.
Clin Cancer Res ; 17(4): 880-7, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21131556

RESUMO

PURPOSE: BMS-641988 is an androgen receptor antagonist with increased potency relative to bicalutamide in both in vitro and in vivo prostate cancer models. A first-in-man phase I study was conducted to define the safety and tolerability of oral BMS-641988 in patients with castration-resistant prostate cancer (CRPC). EXPERIMENTAL DESIGN: Doses were escalated from 5 to 150 mg based on discrete pharmacokinetic parameters in cohorts of three to six subjects. After establishing safety with 20 mg of BMS-641988 in the United States, a companion study was opened in Japan to assess differences in drug metabolism between populations. RESULTS: Sixty-one men with CRPC were treated with daily BMS-641988. The pharmacokinetics (PK) of BMS-641988 and its active metabolites were proportional to dose. One patient experienced an epileptic seizure at a dose of 60 mg administered twice. Despite achieving target drug exposures, antitumor activity was limited to one partial response. Seventeen of 23 evaluable patients (74%) exhibited stable disease on imaging (median 15 weeks; range 8-32), and 10 of 61 patients (16%) achieved a ≥ 30% decline in levels of prostate-specific antigen (PSA). Partial agonism was seen within the context of this study upon removal of the drug as evidenced by a decrease in PSA. CONCLUSIONS: Although the clinical outcomes of predominantly stable disease and partial agonism were similar to what was observed in the preclinical evaluation of the compound, the limited antitumor activity of BMS-641988 at therapeutic dose levels coupled with an episode of seizure activity led to study closure.


Assuntos
Antagonistas de Androgênios/administração & dosagem , Neoplasias Ósseas/secundário , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Imidas/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/farmacocinética , Neoplasias Ósseas/patologia , Compostos Bicíclicos Heterocíclicos com Pontes/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Humanos , Imidas/efeitos adversos , Imidas/farmacocinética , Masculino , Pessoa de Meia-Idade , Orquiectomia , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/patologia , Resultado do Tratamento
19.
Prostate ; 71(5): 480-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20878947

RESUMO

BACKGROUND: Androgen receptor (AR) antagonists are part of the standard of care for prostate cancer. Despite the almost inevitable development of resistance in prostate tumors to AR antagonists, no new AR antagonists have been approved for over a decade. Treatment failure is due in part to mutations that increase activity of AR in response to lower ligand concentrations as well as to mutations that result in AR response to a broader range of ligands. The failure to discover new AR antagonists has occurred in the face of continued research; to enable progress, a clear understanding of the reasons for failure is required. METHODS: Non-clinical drug safety studies and safety pharmacology assays were performed on previously approved AR antagonists (bicalutamide, flutamide, nilutamide), next generation antagonists in clinical testing (MDV3100, BMS-641988), and a pre-clinical drug candidate (BMS-501949). In addition, non-clinical studies with AR mutant mice, and EEG recordings in rats were performed. Non-clinical findings are compared to disclosures of clinical trial results. RESULTS: As a drug class, AR antagonists cause seizure in animals by an off-target mechanism and are found in vitro to inhibit GABA-A currents. Clinical trials of candidate next generation AR antagonists identify seizure as a clinical safety risk. CONCLUSIONS: Non-clinical drug safety profiles of the AR antagonist drug class create a significant barrier to the identification of next generation AR antagonists. GABA-A inhibition is a common off-target activity of approved and next generation AR antagonists potentially explaining some side effects and safety hazards of this class of drugs.


Assuntos
Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/toxicidade , Neoplasias da Próstata/tratamento farmacológico , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/farmacocinética , Animais , Cães , Descoberta de Drogas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neoplasias da Próstata/metabolismo , Ratos , Ratos Sprague-Dawley
20.
Cancer Res ; 70(21): 8770-81, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20959493

RESUMO

The insulin-like growth factor-1 receptor (IGF1R) is emerging as a promising therapeutic target in human cancers. In the high-risk childhood sarcomas Ewing family tumor and rhabdomyosarcoma, IGF1R-blocking antibodies show impressive antitumor activity in some but not all patients, and acquired resistance is observed. Because tumor IGF1R mutations are not described, the basis of IGF1R inhibitor resistance remains unknown. We hypothesized that compensatory signaling cascades bypassing targeted IGF1R inhibition might be involved. To test this systematically, we performed small interfering RNA (siRNA) screens in sarcoma cell lines to identify IGF1R pathway components or related protein tyrosine kinase (PTK) networks that modulate the antitumor efficacy of the BMS-536924 IGF1R kinase inhibitor. This strategy revealed (a) that sarcoma cells are exquisitely sensitive to loss of distal rather than proximal IGF1R signaling components, such as ribosomal protein S6 (RPS6); (b) that BMS-536924 fails to block RPS6 activation in resistant sarcoma cell lines; and (c) that siRNA knockdown of the macrophage-stimulating 1 receptor tyrosine kinase (MST1R; also known as RON) restores BMS-536924 efficacy, even in highly drug-resistant cell lines. We confirmed MST1R expression across a broad panel of childhood sarcomas, and found that loss of MST1R by RNA interference blocks downstream RPS6 activation when combined with BMS-536924 in vitro. These findings underscore the importance of fully understanding PTK networks for successful clinical implementation of kinase inhibitor strategies.


Assuntos
RNA Interferente Pequeno/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor IGF Tipo 1/metabolismo , Proteína S6 Ribossômica/metabolismo , Sarcoma/metabolismo , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Western Blotting , Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Genes Letais , Humanos , Técnicas Imunoenzimáticas , Células-Tronco Mesenquimais/metabolismo , Piridonas/farmacologia , RNA Mensageiro/genética , Receptores Proteína Tirosina Quinases/genética , Receptor IGF Tipo 1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína S6 Ribossômica/genética , Sarcoma/tratamento farmacológico , Sarcoma/genética , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA