Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(11): 2178-2193, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30803230

RESUMO

Reactions of the methylidyne (CH) radical with ammonia (NH3), methylamine (CH3NH2), dimethylamine ((CH3)2NH), and trimethylamine ((CH3)3N) have been investigated under multiple collision conditions at 373 K and 4 Torr. The reaction products are detected by using soft photoionization coupled to orthogonal acceleration time-of-flight mass spectrometry at the Advanced Light Source (ALS) synchrotron. Kinetic traces are employed to discriminate between CH reaction products and products from secondary or slower reactions. Branching ratios for isomers produced at a given mass and formed by a single reaction are obtained by fitting the observed photoionization spectra to linear combinations of pure compound spectra. The reaction of the CH radical with ammonia is found to form mainly imine, HN═CH2, in line with an addition-elimination mechanism. The singly methyl-substituted imine is detected for the CH reactions with methylamine, dimethylamine, and trimethylamine. Dimethylimine isomers are formed by the reaction of CH with dimethylamine, while trimethylimine is formed by the CH reaction with trimethylamine. Overall, the temporal profiles of the products are not consistent with the formation of aminocarbene products in the reaction flow tube. In the case of the reactions with methylamine and dimethylamine, product formation is assigned to an addition-elimination mechanism similar to that proposed for the CH reaction with ammonia. However, this mechanism cannot explain the products detected by the reaction with trimethylamine. A C-H insertion pathway may become more probable as the number of methyl groups increases.

2.
Phys Chem Chem Phys ; 21(6): 2992-3001, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672531

RESUMO

The OH-initiated heterogeneous oxidation of mixed saccharide aqueous aerosols is investigated using an atmospheric-pressure flow tube coupled to off-line analysis of the particle composition. For equimolar monosaccharide/disaccharide aqueous aerosol mixtures, the decay of the disaccharide is found to be significantly slower than that of the monosaccharide. Molecular dynamics simulations of the mixed aqueous solutions reveal the formation of a ∼10 Šdisaccharide exclusion layer below the water surface. A simple chemical model is developed to discuss the possible effect of the disaccharide surface partitioning on the heterogeneous kinetics. The observed decays are consistent with a poor spatial overlap of the OH radical at the interface with the disaccharide in the particle bulk. The effect of partitioning on the heterogeneous oxidation of atmospheric organic aerosols is discussed.

3.
Phys Chem Chem Phys ; 18(8): 5867-82, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26841339

RESUMO

For reactive gas-phase environments, including combustion, extraterrestrials atmospheres and our Earth's atmosphere, the availability of quality chemical data is essential for predictive chemical models. These data include reaction rate coefficients and product branching fractions. This perspective overviews recent isomer-resolved production detection experiments for reactions of two of the most reactive gas phase radicals, the CN and CH radicals, with a suite of small hydrocarbons. A particular focus is given to flow-tube experiments using synchrotron photoionization mass spectrometry. Coupled with computational studies and other experiment techniques, flow tube isomer-resolved product detection have provided significant mechanistic details of these radical + neutral reactions with some general patterns emerging.

4.
J Phys Chem Lett ; 6(24): 4997-5001, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26625195

RESUMO

Self-recombination and cross-reactions of large resonant stabilized hydrocarbon radicals such as fulvenallenyl (C7H5) are predicted to form polycyclic aromatic hydrocarbons in combustion and the interstellar medium. Although fulvenallenyl is likely to be present in these environments, large uncertainties remain about its formation mechanisms. We have investigated the formation of fulvenallenyl by reacting the OH radical with fulvenallene (C7H6) over the 298 to 450 K temperature range and at a pressure of 5 Torr (667 Pa). The reaction rate coefficient is found to be 8.8(±1.7) × 10(-12) cm(3) s(-1) at room temperature with a negative temperature dependence that can be fit from 298 to 450 K to k(T) = 8.8(±1.7) × 10(-12) (T/298 K)(-6.6(±1.1)) exp[-(8.72(±3.03) kJ mol(-1))/(R((1/T) - (1/298 K)))] cm(3) s(-1). The comparison of the experimental data with calculated abstraction rate coefficients suggests that over the experimental temperature range, association of the OH radical to fulvenallene plays a significant role likely leading to a low fulvenallenyl branching fraction.

5.
J Phys Chem A ; 119(45): 11182-90, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26473757

RESUMO

The OH-initiated heterogeneous oxidation of solid methyl ß-d-glucopyranoside nanoparticles (a cellulose oligomer surrogate) is studied in an atmospheric pressure gas flow reactor coupled to an aerosol mass spectrometer. The decay of the solid reactant relative concentration is measured as a function of OH exposure over a wide range of ambient relative humidities (RHs). The kinetic traces display an initial fast exponential decay followed by a slower decay. For long OH exposure, the fraction of a particle that reacts decreases from 90% at RH = 30% to 60% at RH = 20% and to 40% at RH = 10%. A computational model based on the diffusion and reaction of the radical, monosaccharide, and water is developed in order to further examine the experimental data. The model parameters and validity are discussed on the basis of previous literature data. The experimental data are consistent with a diffusion-controlled heterogeneous oxidation. These findings are discussed toward a better understanding of mass transport in semisolid organic material and their effect on chemical change, in particular during the thermal transformation of cellulosic materials to useful chemicals.

6.
Phys Chem Chem Phys ; 17(37): 23833-46, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26304769

RESUMO

Product detection studies of C((3)P) atom reactions with ethylene, C2H4(X(1)Ag) and propylene, C3H6(X(1)A') are carried out in a flow tube reactor at 332 K and 4 Torr (553.3 Pa) under multiple collision conditions. Ground state carbon atoms are generated by 193 nm laser photolysis of carbon suboxide, C3O2 in a buffer of helium. Thermalized reaction products are detected using tunable VUV photoionization and time of flight mass spectrometry. For C((3)P) + ethylene, propargyl (C3H3) is detected as the only molecular product in agreement with previous studies on this reaction. The temporal profiles of the detected ions are used to discriminate C((3)P) reaction products from side reaction products. For C((3)P) + propylene, two reaction channels are identified through the detection of methyl (CH3) and propargyl (C3H3) radicals for the first channel and C4H5 for the second one. Franck-Condon Factor simulations are employed to infer the C4H5-isomer distribution. The measured 1 : 4 ratio for the i-C4H5 isomer relative to the methylpropargyl isomers is similar to the C4H5 isomer distribution observed in low-pressure flames and differs from crossed molecular beams data. The accuracy of these isomer distributions is discussed in view of large uncertainties on the photoionization spectra of the pure C4H5 isomers.

7.
J Phys Chem A ; 118(36): 7732-41, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25111848

RESUMO

The reaction of the OH radical with phenylacetylene is studied over the 298-423 K temperature range and 1-7.5 Torr pressure range in a quasi-static reaction cell. The OH radical is generated by 266 nm photolysis of hydrogen peroxide (H2O2) or 355 nm photolysis of nitrous acid (HONO), and its concentration monitored using laser-induced fluorescence. The measured reaction rates are found to strongly depend on laser fluence at 266 nm. The 266 nm absorption cross-section of phenylacetylene is measured to be 1.29 (±0.71) × 10(-17) cm(2), prohibiting any accurate kinetic measurements at this wavelength. The rates are independent of laser fluence at 355 nm with an average value of 8.75 (±0.73) × 10(-11) cm(3) s(-1). The reaction exhibits no pressure or temperature dependence over the studied experimental conditions and is much faster than the estimated values presently used in combustion models. These results are consistent with the formation of a short lifetime intermediate that stabilizes by collisional quenching with the buffer gas. The structures of the most likely formed products are discussed based on both the computed energies for the OH-addition intermediates and previous theoretical investigations on similar chemical systems.

8.
J Phys Chem A ; 117(43): 11013-26, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24088057

RESUMO

The products formed in the reaction between the methylidene radical (CH) and acrolein (CH2═CHCHO) are probed at 4 Torr and 298 K employing tunable vacuum-ultraviolet synchrotron light and multiplexed photoionization mass-spectrometry. The data suggest a principal exit channel of H loss from the adduct to yield C4H4O, accounting for (78 ± 10)% of the products. Examination of the photoionization spectra measured upon reaction of both CH and CD with acrolein reveals that the isomeric composition of the C4H4O product is (60 ± 12)% 1,3-butadienal and (17 ± 10)% furan. The remaining 23% of the possible C4H4O products cannot be accurately distinguished without more reliable photoionization spectra of the possible product isomers but most likely involves oxygenated butyne species. In addition, C2H2O and C3H4 are detected, which account for (14 ± 10)% and (8 +10, -8)% of the products, respectively. The C2H2O photoionization spectrum matches that of ketene and the C3H4 signal is composed of (24 ± 14)% allene and (76 ± 22)% propyne, with an upper limit of 8% placed on the cyclopropene contribution. The reactive potential energy surface is also investigated computationally, and specific rate coefficients are calculated with RRKM theory. These calculations predict overall branching fractions for 1,3-butadienal and furan of 27% and 12%, respectively, in agreement with the experimental results. In contrast, the calculations predict a prominent CO + 2-methylvinyl product channel that is at most a minor channel according to the experimental results. Studies with the CD radical strongly suggest that the title reaction proceeds predominantly via cycloaddition of the radical onto the C═O bond of acrolein, with cycloaddition to the C═C bond being the second most probable reactive mechanism.

9.
J Phys Chem A ; 117(30): 6450-7, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23829558

RESUMO

The CH(X(2)Π) + propene reaction is studied in the gas phase at 298 K and 4 Torr (533.3 Pa) using VUV synchrotron photoionization mass spectrometry. The dominant product channel is the formation of C4H6 (m/z 54) + H. By fitting experimental photoionization spectra to measured spectra of known C4H6 isomers, the following relative branching fractions are obtained: 1,3-butadiene (0.63 ± 0.13), 1,2-butadiene (0.25 ± 0.05), and 1-butyne (0.12 ± 0.03) with no detectable contribution from 2-butyne. The CD + propene reaction is also studied and two product channels are observed that correspond to C4H6 (m/z 54) + D and C4H5D (m/z 55) + H, formed at a ratio of 0.4 (m/z 54) to 1.0 (m/z 55). The D elimination channel forms almost exclusively 1,2-butadiene (0.97 ± 0.20) whereas the H elimination channel leads to the formation of deuterated 1,3-butadiene (0.89 ± 0.18) and 1-butyne (0.11 ± 0.02); photoionization spectra of undeuterated species are used in the fitting of the measured m/z 55 (C4H5D) spectrum. The results are generally consistent with a CH cycloaddition mechanism to the C═C bond of propene, forming 1-methylallyl followed by elimination of a H atom via several competing processes. The direct detection of 1,3-butadiene as a reaction product is an important validation of molecular weight growth schemes implicating the CH + propene reaction, for example, those reported recently for the formation of benzene in the interstellar medium (Jones , B. M. Proc. Natl. Acad. Sci. U.S.A. 2011 , 108 , 452 - 457).

10.
Phys Chem Chem Phys ; 15(11): 4049-58, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23403615

RESUMO

The reaction of the methylidyne radical (CH) with acetone ((CH(3))(2)C[double bond, length as m-dash]O) is studied at room temperature and at a pressure of 4 Torr (533.3 Pa) using a multiplexed photoionization mass spectrometer coupled to the tunable vacuum ultraviolet synchrotron radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory. The CH radicals are generated by 248 nm multiphoton photolysis of bromoform and react with acetone in an excess of helium and nitrogen gas flow. The main observed reaction exit channel is elimination of a hydrogen atom to form C(4)H(6)O isomers. Analysis of photoionization spectra identifies dimethylketene and methacrolein as the only H-elimination products. The best fit to the data gives branching ratios of 0.68 ± 0.14 for methacrolein and 0.32 ± 0.07 for dimethylketene. A methylketene spectrum measured here is used to reanalyze the photoionization spectrum obtained at m/z = 56 for the CH + acetaldehyde reaction, (Goulay et al., J. Phys. Chem. A, 2012, 116, 6091) yielding new H-loss branching ratios of 0.61 ± 0.12 for acrolein and 0.39 ± 0.08 for methylketene. The contribution from methyleneoxirane to the reaction product distribution is revised to be negligible. Coupled with additional product detection for the CD + acetone reaction, these observations pave the way for development of general set of reaction mechanisms for the addition of CH to compounds containing an acetyl subgroup.


Assuntos
Acetona/química , Acroleína/análogos & derivados , Etilenos/química , Radicais Livres/química , Cetonas/química , Acroleína/química , Etilenos/síntese química , Cetonas/síntese química , Cinética , Fotólise , Temperatura , Trialometanos/química
11.
J Phys Chem A ; 116(15): 3907-17, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-22429068

RESUMO

The reactions of the ethynyl radical (C(2)H) with ethene (C(2)H(4)) and propene (C(3)H(6)) are studied under low temperature conditions (79 K) in a pulsed Laval nozzle apparatus. Ethynyl radicals are formed by 193 nm photolysis of acetylene (C(2)H(2)) and the reactions are studied in nitrogen as a carrier gas. Reaction products are sampled and subsequently photoionized by the tunable vacuum ultraviolet radiation of the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. The product ions are detected mass selectively and time-resolved by a quadrupole mass spectrometer. Bimolecular rate coefficients are determined under pseudo-first-order conditions, yielding values in good agreement with previous measurements. Photoionization spectra are measured by scanning the ALS photon energy while detecting the ionized reaction products. Analysis of the photoionization spectra yields-for the first time-low temperature isomer resolved product branching ratios. The reaction between C(2)H and ethene is found to proceed by H-loss and yields 100% vinylacetylene. The reaction between C(2)H and propene results in (85 ± 10)% C(4)H(4) (m/z = 52) via CH(3)-loss and (15 ± 10)% C(5)H(6) (m/z = 66) by H-loss. The C(4)H(4) channel is found to consist of 100% vinylacetylene. For the C(5)H(6) channel, analysis of the photoionization spectrum reveals that (62 ± 16)% is in the form of 4-penten-1-yne, (27 ± 8)% is in the form of cis- and trans-3-penten-1-yne and (11 ± 10)% is in the form of 2-methyl-1-buten-3-yne.


Assuntos
Alcenos/química , Etilenos/química , Radicais Livres/química , Acetileno/química , Cinética , Temperatura
12.
J Phys Chem A ; 116(24): 6091-106, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22229734

RESUMO

The reaction of the methylidyne radical (CH) with acetaldehyde (CH(3)CHO) is studied at room temperature and at a pressure of 4 Torr (533.3 Pa) using a multiplexed photoionization mass spectrometer coupled to the tunable vacuum ultraviolet synchrotron radiation of the Advanced Light Source at Lawrence Berkeley National Laboratory. The CH radicals are generated by 248 nm multiphoton photolysis of CHBr(3) and react with acetaldehyde in an excess of helium and nitrogen gas flow. Five reaction exit channels are observed corresponding to elimination of methylene (CH(2)), elimination of a formyl radical (HCO), elimination of carbon monoxide (CO), elimination of a methyl radical (CH(3)), and elimination of a hydrogen atom. Analysis of the photoionization yields versus photon energy for the reaction of CH and CD radicals with acetaldehyde and CH radical with partially deuterated acetaldehyde (CD(3)CHO) provides fine details about the reaction mechanism. The CH(2) elimination channel is found to preferentially form the acetyl radical by removal of the aldehydic hydrogen. The insertion of the CH radical into a C-H bond of the methyl group of acetaldehyde is likely to lead to a C(3)H(5)O reaction intermediate that can isomerize by ß-hydrogen transfer of the aldehydic hydrogen atom and dissociate to form acrolein + H or ketene + CH(3), which are observed directly. Cycloaddition of the radical onto the carbonyl group is likely to lead to the formation of the observed products, methylketene, methyleneoxirane, and acrolein.

13.
Phys Chem Chem Phys ; 13(46): 20820-7, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22002654

RESUMO

The reaction of ethynyl radical (C(2)H) with allene (C(3)H(4)) at room temperature is investigated using an improved synchrotron multiplexed photoionization mass spectrometer (MPIMS) coupled to tunable vacuum ultraviolet (VUV) synchrotron radiation from the Advanced Light Source at the Lawrence Berkeley National Laboratory (LBNL). The orthogonal-accelerated time-of-flight mass spectrometer (OA-TOF) compared to the magnetic sector mass spectrometer used in a previous investigation of the title reaction (Phys. Chem. Chem. Phys., 2007, 9, 4291) enables more sensitive and selective detection of low-yield isomeric products. The C(5)H(4) isomer with the lowest ionization energy, pentatetraene, is now identified as a product of the reaction. Pentatetraene is predicted to be formed based on recent ab initio/RRKM calculations (Phys. Chem. Chem. Phys., 2010, 12, 2606) on the C(5)H(5) potential energy surface. However, the computed branching fraction for pentatetraene is predicted to be five times higher than that for methyldiacetylene, whereas experimentally the branching fraction of pentatetraene is observed to be small compared to that of methyldiacetylene. Although H-atom assisted isomerization of the products can affect isomer distribution measurements, isomerization has a negligible effect in this case. The kinetic behavior of the several C(5)H(4) isomers is identical, as obtained by time-dependent photoionization spectra. Even for high allene concentrations (and hence higher H-atom concentrations) no decay of the pentatetraene fraction is observed, indicating that H-assisted isomerization of pentatetraene to methyldiacetylene does not account for the difference between the experimental data and the theoretical branching ratios.

14.
J Phys Chem A ; 114(4): 1749-55, 2010 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-20043665

RESUMO

Low-temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165, and 295 K is found to be relatively constant over this temperature range, (3.9-4.9) x 10(-10) cm(3) molecule(-1) s(-1). These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a rate coefficient of 1.3 x 10(-10) cm(3) molecule(-1) s(-1) at 105 K. At room temperature, nonexponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C(6)H(5)CN) is the only product recorded with no detectable evidence for a C(6)H(5) + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC(6)H(4)CH(3)) constitutes the only detected product. It is not possible to differentiate among the ortho, meta, and para isomers of cyanotoluene because of their similar ionization energies and the approximately 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C(6)H(5)CH(2)) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn's moon Titan ( approximately 100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

15.
J Phys Chem A ; 114(2): 879-83, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19957958

RESUMO

Combined data of photoelectron spectra and photoionization efficiency curves in the near threshold ionization region of isolated ion pairs from [emim][Tf(2)N], [emim][Pf(2)N], and [dmpim][Tf(2)N] ionic liquid vapors reveal small shifts in the ionization energies of ion-pair systems due to cation and anion substitutions. Shifts toward higher binding energy following anion substitution are attributed to increased electronegativity of the anion itself, whereas shifts toward lower binding energies following cation substitution are attributed to an increase in the cation-anion distance that causes a lower Coulombic binding potential. The predominant ionization mechanism in the near threshold photon energy region is identified as dissociative ionization, involving the dissociation of the ion pair and the production of intact cations as the positively charged products.

16.
J Phys Chem A ; 114(2): 904-12, 2010 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19928790

RESUMO

We report isomer-selective kinetics and mechanistic details for the hydroxyl radical-initiated oxidation of isoprene, in the presence of O(2) and NO, employing complementary experimental and theoretical techniques. Using a recently demonstrated photolytic route to initiate isomer-selective kinetics in OH-initiated oxidation of unsaturated hydrocarbons via the UV photolysis of iodohydrins, the photolysis of 1-iodo-2-methyl-3-buten-2-ol results in a single isomer of the possible four OH-isoprene adducts, specifically the minor channel associated with OH addition to one of the inner carbon atoms. Employing both the laser-photolysis/laser-induced fluorescence (LP/LIF) technique and time-dependent multiplexed photoionization mass spectrometry, we find clear experimental evidence supporting the prompt rearrangement of the initially formed beta-hydroxyalkyl radicals to alpha-hydroxyalkyl radicals, in agreement with Rice-Ramsperger-Kassel-Marcus (RRKM)/master equation predictions. We have determined a rate constant of (3.3 +/- 0.5) x 10(-11) cm(3) molecule(-1) s(-1) for molecular oxygen to abstract a hydrogen atom from the alpha-hydroxyalkyl radical to form 4-penten-2-one and HO(2). This reaction provides a mechanistic route to C(5) carbonyl species as first-generation end products for the addition of hydroxyl radical to isoprene in the presence of O(2) and NO.

17.
J Am Chem Soc ; 131(3): 993-1005, 2009 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-19123915

RESUMO

The reactions of the methylidyne radical (CH) with ethylene, acetylene, allene, and methylacetylene are studied at room temperature using tunable vacuum ultraviolet (VUV) photoionization and time-resolved mass spectrometry. The CH radicals are prepared by 248 nm multiphoton photolysis of CHBr(3) at 298 K and react with the selected hydrocarbon in a helium gas flow. Analysis of photoionization efficiency versus VUV photon wavelength permits isomer-specific detection of the reaction products and allows estimation of the reaction product branching ratios. The reactions proceed by either CH insertion or addition followed by H atom elimination from the intermediate adduct. In the CH + C(2)H(4) reaction the C(3)H(5) intermediate decays by H atom loss to yield 70(+/-8)% allene, 30(+/-8)% methylacetylene, and less than 10% cyclopropene, in agreement with previous RRKM results. In the CH + acetylene reaction, detection of mainly the cyclic C(3)H(2) isomer is contrary to a previous RRKM calculations that predicted linear triplet propargylene to be 90% of the total H-atom coproducts. High-level CBS-APNO quantum calculations and RRKM calculations for the CH + C(2)H(2) reaction presented in this manuscript predict a higher contribution of the cyclic C(3)H(2) (27.0%) versus triplet propargylene (63.5%) than earlier predictions. Extensive calculations on the C(3)H(3) and C(3)H(2)D system combined with experimental isotope ratios for the CD + C(2)H(2) reaction indicate that H-atom-assisted isomerization in the present experiments is responsible for the remaining discrepancy between the new RRKM calculations and the experimental results. Cyclic isomers are also found to represent 30(+/-6)% of the detected products in the case of CH + methylacetylene, together with 33(+/-6)% 1,2,3-butatriene and 37(+/-6)% vinylacetylene. The CH + allene reaction gives 23(+/-5)% 1,2,3-butatriene and 77(+/-5)% vinylacetylene, whereas cyclic isomers are produced below the detection limit in this reaction. The reaction exit channels deduced by comparing the product distributions for the aforementioned reactions are discussed in detail.

18.
J Phys Chem A ; 112(39): 9366-73, 2008 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-18702479

RESUMO

Product channels for the self-reaction of the resonance-stabilized allyl radical, C3H5 + C3H5, have been studied with isomeric specificity at temperatures from 300-600 K and pressures from 1-6 Torr using time-resolved multiplexed photoionization mass spectrometry. Under these conditions 1,5-hexadiene was the only C6H10 product isomer detected. The lack of isomerization of the C6H10 product is in marked contrast to the C6H6 product in the related C3H3 + C3H3 reaction, and is due to the more saturated electronic structure of the C6H10 system. The disproportionation product channel, yielding allene + propene, was also detected, with an upper limit on the branching fraction relative to recombination of 0.03. Analysis of the allyl radical decay at 298 K yielded a total rate coefficient of (2.7 +/- 0.8) x 10(-11) cm(3) molecule(-1) s(-1), in good agreement with previous experimental measurements using ultraviolet kinetic absorption spectroscopy and a recent theoretical determination using variable reaction coordinate transition state theory. This result provides independent indirect support for the literature value of the allyl radical ultraviolet absorption cross-section near 223 nm.

19.
J Chem Phys ; 127(18): 184305, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-18020637

RESUMO

Photodissociation of bromine on the Br2(1Piu) state is probed with ultrafast extreme ultraviolet (53.7 nm) single-photon ionization. Time-resolved photoelectron spectra show simultaneously the depletion of ground state bromine molecules as well as the rise of Br(2P3/2) products due to 402.5 nm photolysis. A partial photoionization cross-section ratio of atomic versus molecular bromine is obtained. Transient photoelectron spectra of a dissociative wave packet on the excited state are presented in the limit of low-power-density, single-photon excitation to the dissociative state. Transient binding energy shifts of "atomic-like" photoelectron peaks are observed and interpreted as photoionization of nearly separated Br atom pairs on the Br2(1Piu) state to repulsive dissociative ionization states.

20.
J Am Chem Soc ; 129(45): 14019-25, 2007 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17941639

RESUMO

The photoionization of 1-alkenylperoxy radicals, which are peroxy radicals where the OO moiety is bonded to an sp2-hybridized carbon, is studied by experimental and computational methods and compared to the similar alkylperoxy systems. Quantum chemical calculations are presented for the ionization energy and cation stability of several alkenylperoxy radicals. Experimental measurements of 1-cyclopentenylperoxy (1-c-C5H7OO) and propargylperoxy (CH2=C=CHOO) photoionization are presented as examples. These radicals are produced by reaction of an excess of O2 with pulsed-photolytically produced alkenyl radicals. The kinetic behavior of the products confirms the formation of the alkenylperoxy radicals. Electronic structure calculations are employed to give structural parameters and energetics that are used in a Franck-Condon (FC) spectral simulation of the photoionization efficiency (PIE) curves. The calculations also serve to identify the isomeric species probed by the experiment. Adiabatic ionization energies (AIEs) of 1-c-C5H7OO (8.70 +/- 0.05 eV) and CH2=C=CHOO (9.32 +/- 0.05 eV) are derived from fits to the experimental PIE curves. From the fitted FC simulation superimposed on the experimental PIE curves, the splitting between the ground state singlet and excited triplet cation electronic states is also derived for 1-c-C5H7OO (0.76 +/- 0.05 eV) and CH2=C=CHOO (0.80 +/- 0.15 eV). The combination of the AIE(CH2=C=CHOO) and the propargyl heat of formation provides Delta f H(0)(o) (CH2=C=CHOO+) of (1162 +/- 8) kJ mol-1. From Delta f H(0)(o) (CH2=C=CHOO+) and Delta f H (0)(o) (C3H3+) it is also possible to extract the bond energy D(0)(o)(C3H3+-OO) of 19 kJ mol-1 (0.20 eV). Finally, from consideration of the relevant molecular orbitals, the ionization behavior of alkyl- and alkenylperoxy radicals can be generalized with a simple rule: Alkylperoxy radicals dissociatively ionize, with the exception of methylperoxy, whereas alkenylperoxy radicals have stable singlet ground electronic state cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA