RESUMO
This work details the synthesis and characterization of low-coordinate Zn(II)-based organocations [(NHC)Zn(R)]+ incorporating extremely bulky NHCs [ITr] and [IAd] ([ITr] = ([ITr] = [(HCNCPh3)2C:]; [IAd] = [(HCNAd)2C:], Ad = adamantyl)). Their structural features and particularities are thoroughly assessed as well as their air and water tolerance. Neutral ITr and IAd adducts [(ITr)Zn(R)2] (1, R = Me; 2, R = Et) and [(IAd)Zn(R)2] (3, R = Me; 4, R = Et) were synthesized by reaction of carbene [ITr] or [IAd] with a stoichiometric amount of [ZnR2] and isolated in good yields. Despite the steric bulk of [ITr] and [IAd], neutral compounds 1-4 are robust and the solid state structure of adduct 3 was established through X-ray crystallographic studies as a trigonal monomer Zn(II) species. Adducts 1-4 may readily be ionized by [Ph3C][B(C6F5)4] to afford two-coordinate Zn(II) alkyl cations [(ITr)Zn(Me)]+ ([5]+) and [(ITr)Zn(Et)]+ ([6]+), [(IAd)Zn(Me)]+ ([7]+) and [(IAd)Zn(Me)]+ ([8]+), all isolated in high yields (>80%) as [B(C6F5)4]- salts, which were fully characterized. Remarkably, cation [(ITr)Zn(C6F5)]+ ([9]+), prepared by reaction of [5][B(C6F5)4] with [B(C6F5)3], features π-arene interactions with the electrophilic Zn(II), as deduced from solid state data and further completed by DFT-estimated non-covalent interactions (NCI), indicating that [ITr] may provide substantial steric and electrostatic stabilization. The latter certainly explains the remarkable stability of [(ITr)Zn(C6F5)]+ ([9]+) towards hydrolysis at RT, as it only coordinates H2O to afford an unprecedented stable Zn-OH2 organocation [10]+. Also noteworthy, H2O coordination is reversible allowing recovery of [(ITr)Zn(C6F5)]+ cation, even after prolonged air exposure. Yet, controlled hydrolysis of [(ITr)Zn(C6F5)]+ may occur upon heating with selective protonolysis of the Zn-C6F5 bond to afford structurally characterized dication [(ITr)Zn(OH)]22+ [11]2+. Interestingly, despite steric hindrance, the air-/water-tolerant cation [(ITr)Zn(C6F5)]+ is an effective CO2 hydrosilylation catalyst, and was also shown to mediate imine hydrogenation catalysis.
RESUMO
The first example of the palladium-catalyzed sp3 C-H bond activation in a monoterpene-based compound has been observed in the reaction of PdCl2 with a (+)-3-carene-based ligand HL (HL = N-((1aS,3S,7bR)-1,1,3-trimethyl-7-phenyl-5-(pyridin-2-yl)-1a,2,3,7b-tetrahydro-1H-cyclopropa[f]quinolin-3-yl)acetamide), which yielded the [PdLCl] complex. In contrast to the vast majority of C(sp3)-H activation reactions which require prolonged heating and mixing due to the inert character of the corresponding bond, the reaction reported herein proceeds rapidly under mild conditions. A theoretical insight into the ligand deprotonation has been performed by DFT calculations. The mechanism of the C-H activation involves (i) simultaneous coordination of the CH3 group of HL to the Pd2+ ion and decoordination of the Cl- anion with consequent formation of a Clâ â â H-N hydrogen bond with the amide group, (ii) approximation of the out-of-sphere Cl- anion to one of the hydrogen atoms of the CH3 group mediated by the crane motion of the amide group and (iii) the ejection of the HCl molecule, which increases the entropy of the system and serves as a driving force for the reaction.
RESUMO
The synthesis of [6]helicene para-quinone starting from the 1,4-dimethoxy-[6]helicene derivative is presented. The demethylation reaction with boron tribromide led to unexpected results. Instead of the expected para-hydroquinone, the diketone tautomeric form was isolated. In contrast to the 1,4-hydroquinone and 1,4-dihydroxynaphthalene, the stable tautomers for the [4] and [6]helicenes were the aromatic diketones. These experimental results were corroborated by calculations. Additional calculations showed that these tautomeric species were indeed the stable forms of 1,4 and 1,3-hydroquinones when present in larger aromatics, in drastic contrast with 1,2-dihydroxy-aromatics (known as catechol).
RESUMO
The impact of isomerism of pyrimidine-based ligands and their rhodium(III) complexes with regard to their structures and properties was investigated. Two isomeric ligands, 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2,5-diphenylpyrimidine (HL2,5) and 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2,6-diphenylpyrimidine (HL2,6), were synthesized. The ligands differ by the degree of steric bulk: the molecular structure of HL2,5 is more distorted due to presence of pyrazolyl and phenyl groups in the neighbouring positions 4 and 5 of the pyrimidine ring. The complexation of HL2,5 and HL2,6 with RhCl3 leads to the sp2 C-H bond activation, resulting in the isolation of two complexes, [RhL2,5(Solv)Cl2]·nEtOH and [RhL2,6(Solv)Cl2]·nEtOH (Solv = H2O, EtOH), with the deprotonated forms of the pyrazolylpyrimidine molecules which coordinate the Rh3+ ion as N^N^C-tridentate ligands. According to DFT modelling, the mechanism of the deprotonation involves (i) the C-H bond breaking in the 2-phenyl group followed by the coordination of the C atom to the Rh atom, (ii) the protonation of coordinated chlorido ligand, (iii) the ejection of the HCl molecule and (iv) the coordination of the H2O molecule. The ligand isomerism has an impact on emission properties and cytotoxicity of the complexes. Although the excited states of the complexes effectively deactivate through S0/T1 and S0/S1 crossings associated with the cleavage of the weak H2O ligands upon excitation, the [RhL2,5(Solv)Cl2]·nEtOH complex appeared to be emissive in the solid state, while [RhL2,6(Solv)Cl2]·nEtOH is non-emissive at all. The complexes show significant cytotoxic activity against cancerous HepG2 and Hep2 cell lines, with the [RhL2,6(Solv)Cl2]·nEtOH complex being more active than its isomer [RhL2,5(Solv)Cl2]·nEtOH. On the other hand, noticeable cytotoxicity of the latter against HepG2 is supplemented by its non-toxicity against non-cancerous MRC-5 cells.
RESUMO
Flavins and their alloxazine isomers are key chemical scaffolds for bioinspired electron transfer strategies. Their properties can be fine-tuned by functional groups, which must be introduced at an early stage of the synthesis as their aromatic ring is inert towards post-functionalization. We show that the introduction of a remote metal-binding redox site on alloxazine and flavin activates their aromatic ring towards direct C-H functionalization. Mechanistic studies are consistent with a synthetic sequence involving ground-state single electron transfer (SET) with an electrophilic source followed by radical-radical coupling. This unprecedented reactivity opens new opportunities in molecular editing of flavins by direct aromatic post-functionalization and the utility of the method is demonstrated with the site-selective C6 functionalization of alloxazine and flavin with a CF3 group, Br or Cl, that can be further elaborated into OH and aryl for chemical diversification.
RESUMO
The pincer complexes [NiIIBr(CNC)]Br (4), [CrIIIBr3(CNC)] (5 a) and [CrIIIBr2.3Cl0.7(CNC)] (5 b), where CNC=3,3'-(pyridine-2,6-diyl)bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene), were obtained from the novel ligand CNC, generated inâ situ from the precursor (CHNCH)Br2 and [NiIIBr2(PPh3)2] or from [CrII{N(SiMe3)2}2(THF)2] and (CHNCH)Br2 by aminolysis, respectively. The tetrahedrally distorted square planar (τ4â 0.30) geometry and the singlet ground state of Ni in 4 were attributed to steric constraints of the CNC backbone. Computational methods highlighted the dependence of the coordination geometry and the singlet-triplet energy difference on the size of the N-substituent of the tetrahydropyrimidine wingtips and contrasted it to the situation in 5-membered imidazolin-2-ylidene pincer analogues. The octahedral CrIII metal center in 5 a and 5 b is presumably formed after one electron oxidation from CH2Cl2. 4/MAO and 5 a/MAO were catalysts of moderate activity for the oligomerization and polymerization of ethylene, respectively. The analogous (CH^N^CH)Br2 precursor, where (CH^N^CH)=3,3'-(pyridine-2,6-diylbis(methylene))bis(1-mesityl-3,4,5,6-tetrahydropyrimidin-1-ium), was also prepared, however its coordination chemistry was not studied due to the inherent instability of the resulting free C^N^C ligand.
RESUMO
Three new ligands based on the alloxazine core appended with pyridyl coordinating groups have been designed, synthesized, and characterized. The ligands are revealed to be redox-active in DMF solution, as attested to by CV and combined CV/EPR studies. The spin of the reduced species appears to be delocalized on the alloxazine core, as attested to by DFT calculations. The coordination abilities of one of the ligands toward Cu2+ or Ni2+ 3d cations revealed the formation of the first alloxazine-based 3D coordination polymers, presenting strong π-π stacking and substantial cavities. Preliminarily charge/discharge experiments in Li batteries evidence Li+ insertion in such systems.
RESUMO
The design of enantiomerically pure circularly polarized luminescent (CPL) emitters would enormously benefit from the accurate and in-depth interpretation of the chiroptical properties by means of jointly (chiroptical) photophysical measurements and state-of-the-art theoretical investigation. Herein, computed and experimental (chiro-)optical properties of a series of eight enantiopure phosphorescent rhenium(I) tricarbonyl complexes are systematically compared in terms of electronic circular dichroism (ECD) and CPL. The compounds have general formula fac-[ReX(CO)3(N^CNHC)], where N^CNHC is a pyridyl benzannulated N-heterocyclic carbene deriving from a (substituted) 2-(pyridin-2-yl)imidazo[1,5-a]pyridin-2-ium proligand and X = Cl, Br and I, and display structured red phosphorescence with long-lived (τ = 7.0-19.1 µs) excited-state lifetime and dissymmetry factors |gLum| up to 4 × 10-3. The mixing of the character of the lowest-lying emitting triplet excited state is finely modulated between ligand centred (3LC), metal-to-ligand charge transfer (3MLCT) and halogen-to-ligand charge transfer (3XLCT) by the nature of the ancillary halogen and the chromophoric N^CNHC ligand. The study unravels the effect exerted by the nature of the excited state onto the ECD and CPL activity and will help to pave the way to construct efficient CPL emitters by chemical design.
RESUMO
Eugenol and isoeugenol are well acknowledged to possess antioxidant and thus cytoprotective activities. Yet both compounds are also important skin sensitizers, compelling the cosmetics and fragrance industries to notify their presence in manufactured products. While they are structurally very similar, they show significant differences in their sensitization properties. Consequently, eugenol and isoeugenol have been the subject of many mechanistic studies where the final oxidation forms, electrophilic ortho-quinone and quinone methide, are blamed as the reactive species forming an antigenic complex with nucleophilic residues of skin proteins, inducing skin sensitization. However, radical mechanisms could compete with such an electrophilic-nucleophilic pathway. The antioxidant activity results from neutralizing reactive oxygen radicals by the release of the phenolic hydrogen atom. The so-formed phenoxyl radicals can then fully delocalize upon the structure, becoming potentially reactive toward skin proteins at several positions. To obtain in-depth insights into such reactivity, we investigated in situ the formation of radicals from eugenol and isoeugenol using electron paramagnetic resonance combined with spin trapping in reconstructed human epidermis (RHE), mimicking human skin and closer to what may happen in vivo. Two modes of radical initiation were used, exposing RHE to (i) horseradish peroxidase (HRP), complementing RHE metabolic capacities, and mimicking peroxidases present in vivo or (ii) solar light using a AM 1.5 solar simulator. In both experimental approaches, where the antioxidant character of both compounds is revealed, oxygen- and carbon-centered radicals were formed in RHE. Our hypothesis is that such carbon radicals are relevant candidates to form antigenic entities prior to conversion into electrophilic quinones. On this basis, these studies suggest that pro- or prehapten fingerprints could be advanced depending on the radical initiation method. The introduction of HRP suggested that eugenol and isoeugenol behave as prohaptens, while when exposed to light, a prehapten nature could be highlighted.
Assuntos
Antioxidantes , Eugenol , Humanos , Antioxidantes/farmacologia , Eugenol/farmacologia , Pele , Carbono , Peroxidase do Rábano SilvestreRESUMO
A rare example of pyrimidine-based ESIPT-capable compounds, 2-(2-hydroxyphenyl)-4-(1H-pyrazol-1-yl)-6-methylpyrimidine (HLH), was synthesized (ESIPTâexcited state intramolecular proton transfer). Its reactions with zinc(II) salts under basic or acidic conditions afforded a dinuclear [Zn2LH2Cl2] complex and an ionic (H2LH)4[ZnCl4]2·3H2O solid. Another ionic solid, (H2LH)Br, was obtained from the solution of HLH acidified with HBr. In both ionic solids, the H+ ion protonates the same pyrimidinic N atom that accepts the O-H···N intramolecular hydrogen bond in the structure of free HLH, which breaks this hydrogen bond and switches off ESIPT in these compounds. This series of compounds which includes neutral HLH molecules and ionic (LH)- and (H2LH)+ species allowed us to elucidate the impact of protonation and coordination coupled deprotonation of HLH on the photoluminescence response and on altering the emission mechanism. The neutral HLH compound exhibits yellow emission as a result of the coexistence of two radiative decay channels: (i) T1 â S0 phosphorescence of the enol form and (ii) anti-Kasha S2 â S0 fluorescence of the keto form, which if feasible due to the large S2-S1 energy gap. However, owing to the efficient nonradiative decay through an energetically favorable conical intersection, the photoluminescence quantum yield of HLH is low. Protonation or deprotonation of the HLH ligand results in the significant blue-shift of the emission bands by more than 100 nm and boosts the quantum efficiency up to ca. 20% in the case of [Zn2LH2Cl2] and (H2LH)4[ZnCl4]2·3H2O. Despite both (H2LH)4[ZnCl4]2·3H2O and (H2LH)Br have the same (H2LH)+ cation in the structures, their emission properties differ significantly, whereas (H2LH)Br shows dual emission associated with two radiative decay channels: (i) S1 â S0 fluorescence and (ii) T1 â S0 phosphorescence, (H2LH)4[ZnCl4]2·3H2O exhibits only fluorescence. This difference in the emission properties can be associated with the external heavy atom effect in (H2LH)Br, which leads to faster intersystem crossing in this compound. Finally, a huge increase in the intensity of the phosphorescence of (H2LH)Br on cooling leads to pronounced luminescence thermochromism (violet emission at 300 K, sky-blue emission at 77 K).
RESUMO
A series of four binuclear complexes of general formula [(C^C)Au(Cl)(L^L)(Cl)Au(C^C)], where C^C is 4,4'-diterbutylbiphenyl and L^L is either a bridging diphosphine or 4,4'-bipyridine, are synthetized with 52 to 72 % yield and structurally characterized by X-ray diffraction. The use of the chelating 1,2-diphenylphosphinoethane ligand in a 1 : 2 (P^P):Au stoichiometry leads to the near quantitative formation of a gold double-complex salt of general formula [(C^C)Au(P^P)][(C^C^)AuCl2 ]. The compounds display long-lived yellow-green phosphorescence with λem in the range of 525 to 585â nm in the solid state with photoluminescence quantum yields (PLQY) up to 10 %. These AuIII complexes are tested for their antiproliferative activity against lung adenocarcinoma cells A549 and results show that compounds 2 and 5 are the most promising candidates. The digold salt 5 shows anticancer activity between 66 and 200â nM on the tested cancer cell lines, whereas derivative 2 displays concentration values required to reduce by 50 % the cell viability (IC50 ) between 7 and 11â µM. Reactivity studies of compound 5 reveal that the [(C^C)Au(P^P)]+ cation is stable in the presence of relevant biomolecules including glutathione suggesting a structural mechanism of action.
Assuntos
Antineoplásicos , Antineoplásicos/química , Compostos Organoáuricos/química , Linhagem Celular Tumoral , Compostos de BifeniloRESUMO
In this work, we present a computational study that is able to predict the optical absorption and photoluminescent properties of the chiral Re(I) family of complexes [fac-ReX(CO)3L], where X is either Cl or I and L is N-heterocyclic carbene extended with π-conjugated [5]-helicenic unit. The computational strategy is based on carefully calibrated time dependent density functional theory calculations and operates in conjunction with an excited state dynamics approach to treat in addition to absorption (ABS) and photoluminescence (PL), electronic circular dichroism (ECD), and circularly polarized luminescence (CPL) spectroscopies, respectively. The employed computational approach provides, an addition, access to the computation of phosphorescence rates in terms of radiative and non-radiative relaxation processes. The chosen molecules consist of representative examples of non-helicenic (NHC) and helicenic diastereomers. The agreement between theoretical and experimental spectra, including absorption (ABS, ECD) and emission (PL, CPL), is excellent, validating a quantitative interpretation of the spectral features on the basis of natural transition orbitals and TheoDore analyses. It is demonstrated that across the set of studied Re(I) diastereomers, the emission process in the case of NHC diastereomers is metal to ligand charge transfer in nature and is dominated by the easy-axis anisotropy of the emissive excited multiplet. On the contrary, in the cases of the helicenic diastereomers, the emission process is intra ligand charge transfer in nature and is dominated by the respective easy-plane anisotropy of the emissive excited multiplet. This affects remarkably the photoluminescent properties of the molecules in terms of PL and CPL spectral band shapes, spin-vibronic coupling, relaxation times, and the respective quantum yields. Spin-vibronic coupling effects are investigated at the level of the state-average complete active space self-consistent field in conjunction with quasi-degenerate second order perturbation theory. It is in fact demonstrated that a spin-vibronic coupling mechanism controls the observed photophysics of this class of Re(I) complexes.
RESUMO
Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712â nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756â nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.
RESUMO
The conformational preference of a cavity-based biaryl phosphine, namely 5-(2-diphenylphosphinyl-phenyl)-25,26,27,28-tetrapropyloxycalix[4]arene (L) has been investigated by density functional theory calculations. The analysis showed that the barrier to rotation about the C-C axle of the biaryl unit is only 10.7 kcal mol-1, this rendering possible access to conformers of two types, those in which the P lone pair sits at the cavity entrance and points to the calixarene interior, others with a more open structure where the P atom is located outside the cavity. As revealed by a single crystal X-ray diffraction study, the biaryl phosphine appears virtually as an atropisomer in the solid state in which the phosphorus atom lies totally out of the cavity defined by the four phenoxy rings.
RESUMO
A multi-responsive receptor consisting of two (acridinium-Zn(II) porphyrin) conjugates has been designed. The binding constant between this receptor and a ditopic guest has been modulated (i) upon addition of nucleophiles converting acridinium moieties into the non-aromatic acridane derivatives and (ii) upon oxidation of the porphyrin units. A total of eight states has been probed for this receptor resulting from the cascade of the recognition and responsive events. Moreover, the acridinium/acridane conversion leads to a significant change of the photophysical properties, switching from electron to energy transfer processes. Interestingly, for the bis(acridinium-Zn(II) porphyrin) receptor, charge-transfer luminescence in the near-infrared has been observed.
RESUMO
The binding behaviour of two ureido-hexahomotrioxacalix[3]arene derivatives bearing naphthyl (1) and pyrenyl (2) fluorogenic units at the lower rim towards selected nitroaromatic compounds (NACs) was evaluated. Their affinity, or lack of it, was determined by UV-Vis absorption, fluorescence and NMR spectroscopy. Different computational methods were also used to further investigate any possible complexation between the calixarenes and the NACs. All the results show no significant interaction between calixarenes 1 and 2 and the NACs in either dichloromethane or acetonitrile solutions. Moreover, the fluorescence quenching observed is only apparent and merely results from the absorption of the NACs at the excitation wavelength (inner filter effect). This evidence is in stark contrast with reports in the literature for similar calixarenes. A naphthyl urea dihomooxacalix[4]arene (3) is also subject to the inner filter effect and is shown to form a stable complex with trinitrophenol; however, the equilibrium association constant is greatly overestimated if no correction is applied (9400 M-1 vs 3000 M-1), again stressing the importance of taking into account the inner filter effect in these systems.
RESUMO
A series of ten cationic complexes of the general formula [(C^C)Au(P^P)]X, where C^C = 4,4'-di-tert-butyl-1,1'-biphenyl, P^P is a diphosphine ligand, and X is a noncoordinating counteranion, have been synthesized and fully characterized by means of chemical and X-ray structural methods. All the complexes display a remarkable switch-on of the emission properties when going from a fluid solution to a solid state. In the latter, long-lived emission with lifetime τ = 1.8-83.0 µs and maximum in the green-yellow region is achieved with moderate to high photoluminescence quantum yield (PLQY). This emission is ascribed to an excited state with a mainly triplet ligand-centered (3LC) nature. This effect strongly indicates that rigidification of the environment helps to suppress nonradiative decay, which is mainly attributed to the large molecular distortion in the excited state, as supported by density functional theory (DFT) and time-dependent DFT (TD-DFT) computation. In addition, quenching intermolecular interactions of the emitter are avoided thanks to the steric hindrance of the substituents. Emissive properties are therefore restored efficiently. The influence of both diphosphine and anion has been investigated and rationalized as well. Using two complexes as examples and owing to their enhanced optical properties in the solid state, the first proof-of-concept of the use of gold(III) complexes as electroactive materials for the fabrication of light-emitting electrochemical cell (LEC) devices is herein demonstrated. The LECs achieve peak external quantum efficiency, current efficiency, and power efficiency up to ca. 1%, 2.6 cd A-1, and 1.1 lm W-1 for complex 1PF6 and 0.9%, 2.5 cd A-1, and 0.7 lm W-1 for complex 3, showing the potential use of these novel emitters as electroactive compounds in LEC devices.
RESUMO
In this study, a series of new heteroleptic copper(I) bis(diimine) complexes are described. Using one highly hindered phenanthroline ligand and a second less-hindered diimine ligand led to unexpected results. Following a two-step one-pot method to obtain heteroleptic copper(I) complexes, an almost perfect tetrahedral coordination geometry around the copper(I) ion was obtained in several cases, despite the fact that at least one ligand was not sterically encumbered near the coordination site (at the position α to the nitrogen atoms of the ligand). This was demonstrated in the solid state by resolution of crystal structures, and these findings, corroborated by calculations, showed that the non-covalent interactions between the two diimine ligands present in these complexes were governing these structural features. The electronic properties of all complexes were also determined and the fluorescence lifetimes of two complexes were compared.
RESUMO
Ten novel small-molecule fluorophores containing two electron-accepting imidazo[1,2-a]pyridine (ImPy) units are presented. Each ImPy core is functionalized at its C6 position with groups featuring either electron accepting (A) or donating (D) properties, thus providing emitters with general structure X-ImPy-Y-ImPy-X (X=either A or D; Y=phenyl or pyridine). The molecules bear either a phenyl (series 4) or a pyridine (series 5) π bridge that connects the two ImPys via meta (phenyl) or 2,6- (pyridine) positions, yielding an overall V-shaped architecture. The final compounds are synthetized straightforwardly by condensation between substituted 2-aminopyridines and α-halocarbonyl derivatives. All the compounds display intense photoluminescence with quantum yield (PLQY) in the range of 0.17-0.51. Remarkably, substituent effect enables tuning the emission from near-UV to (deep-)blue region while keeping Commission Internationale de l'Éclairage (CIE) y coordinate ≤0.07. The emitting excited state is characterized by a few nanoseconds lifetime and high radiative rate constant, and its nature is modulated from pure π-π* to intramolecular charge transfer (ICT) by the electronic properties of the peripheral X substituent. This is further corroborated by the nature of the frontier orbitals and vertical electronic excitations computed at (time-dependent) density functional level of theory (TD-)DFT. Finally, this study enlarges the palette of bright deep-blue emitters based on the interesting ImPy scaffolds in view of their potential application as photo-functional materials in optoelectronics.
Assuntos
Corantes Fluorescentes , Piridinas , Corantes Fluorescentes/química , Elétrons , Teoria da Densidade FuncionalRESUMO
A [2]rotaxane built around a multi-responsive bis-acridinium macrocycle has been synthesized. Structural investigation has confirmed the interlocked nature of the molecule, and MD simulations illuminated its conformational dynamics with atomic resolution. Both halochromic and redox-switching properties were explored to shed light on the mechanical response and electronic changes that occur in the bis-acridinium [2]rotaxane. The topology of the rotaxane led to different mechanical behaviors upon addition of hydroxide ions or reduction that were easily detected by UV/Vis spectroscopy and electrochemistry.