Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 94(1): 222-228, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34449894

RESUMO

The current study aimed at characterizing the dynamics of SARS-CoV-2 nucleocapsid (N) antigenemia in a cohort of critically ill adult COVID-19 patients and assessing its potential association with plasma levels of biomarkers of clinical severity and mortality. Seventy-three consecutive critically ill COVID-19 patients (median age, 65 years) were recruited. Serial plasma (n = 340) specimens were collected. A lateral flow immunochromatography assay and reverse-transcription polymerase chain reaction (RT-PCR) were used for SARS-CoV-2 N protein detection and RNA quantitation and in plasma, respectively. Serum levels of inflammatory and tissue-damage biomarkers in paired specimens were measured. SARS-CoV-RNA N-antigenemia and viral RNAemia were documented in 40.1% and 35.6% of patients, respectively at a median of 9 days since symptoms onset. The level of agreement between the qualitative results returned by the N-antigenemia assay and plasma RT-PCR was moderate (k = 0.57; p < 0.0001). A trend towards higher SARS-CoV-2 RNA loads was seen in plasma specimens testing positive for N-antigenemia assay than in those yielding negative results (p = 0.083). SARS-CoV-2 RNA load in tracheal aspirates was significantly higher (p < 0.001) in the presence of concomitant N-antigenemia than in its absence. Significantly higher serum levels of ferritin, lactose dehydrogenase, C-reactive protein, and D-dimer were quantified in paired plasma SARS-CoV-2 N-positive specimens than in those testing negative. Occurrence of SARS-CoV-2 N-antigenemia was not associated with increased mortality in univariate logistic regression analysis (odds ratio, 1.29; 95% confidence interval, 0.49-3.34; p = 0.59). In conclusion, SARS-CoV-2 N-antigenemia detection is relatively common in ICU patients and appears to associate with increased serum levels of inflammation and tissue-damage markers. Whether this virological parameter may behave as a biomarker of poor clinical outcome awaits further investigations.


Assuntos
COVID-19/virologia , Proteínas do Nucleocapsídeo de Coronavírus/sangue , Estado Terminal , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos Virais/sangue , Biomarcadores/análise , Biomarcadores/sangue , COVID-19/mortalidade , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/sangue , Fosfoproteínas/imunologia , Estudos Prospectivos , RNA Viral/análise , RNA Viral/sangue , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Traqueia/virologia , Adulto Jovem
2.
Int J Mol Sci ; 22(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34948268

RESUMO

Rotavirus (RV) and norovirus (NoV) are the leading causes of acute gastroenteritis (AGE) worldwide. Several studies have demonstrated that histo-blood group antigens (HBGAs) have a role in NoV and RV infections since their presence on the gut epithelial surfaces is essential for the susceptibility to many NoV and RV genotypes. Polymorphisms in genes that code for enzymes required for HBGAs synthesis lead to secretor or non-secretor and Lewis positive or Lewis negative individuals. While secretor individuals appear to be more susceptible to RV infections, regarding NoVs infections, there are too many discrepancies that prevent the ability to draw conclusions. A second factor that influences enteric viral infections is the gut microbiota of the host. In vitro and animal studies have determined that the gut microbiota limits, but in some cases enhances enteric viral infection. The ways that microbiota can enhance NoV or RV infection include virion stabilization and promotion of virus attachment to host cells, whereas experiments with microbiota-depleted and germ-free animals point to immunoregulation as the mechanism by which the microbiota restrict infection. Human trials with live, attenuated RV vaccines and analysis of the microbiota in responder and non-responder individuals also allowed the identification of bacterial taxa linked to vaccine efficacy. As more information is gained on the complex relationships that are established between the host (glycobiology and immune system), the gut microbiota and intestinal viruses, new avenues will open for the development of novel anti-NoV and anti-RV therapies.

3.
BMC Genomics ; 22(1): 849, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819031

RESUMO

BACKGROUND: Genome assembly of viruses with high mutation rates, such as Norovirus and other RNA viruses, or from metagenome samples, poses a challenge for the scientific community due to the coexistence of several viral quasispecies and strains. Furthermore, there is no standard method for obtaining whole-genome sequences in non-related patients. After polyA RNA isolation and sequencing in eight patients with acute gastroenteritis, we evaluated two de Bruijn graph assemblers (SPAdes and MEGAHIT), combined with four different and common pre-assembly strategies, and compared those yielding whole genome Norovirus contigs. RESULTS: Reference-genome guided strategies with both host and target virus did not present any advantages compared to the assembly of non-filtered data in the case of SPAdes, and in the case of MEGAHIT, only host genome filtering presented improvements. MEGAHIT performed better than SPAdes in most samples, reaching complete genome sequences in most of them for all the strategies employed. Read binning with CD-HIT improved assembly when paired with different analysis strategies, and more notably in the case of SPAdes. CONCLUSIONS: Not all metagenome assemblies are equal and the choice in the workflow depends on the species studied and the prior steps to analysis. We may need different approaches even for samples treated equally due to the presence of high intra host variability. We tested and compared different workflows for the accurate assembly of Norovirus genomes and established their assembly capacities for this purpose.


Assuntos
Metagenoma , Norovirus , Algoritmos , Benchmarking , Humanos , Metagenômica , Norovirus/genética , Análise de Sequência , Análise de Sequência de DNA , Software
4.
Biomedicines ; 9(7)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34356911

RESUMO

Intestinal microbiota-virus-host interaction has emerged as a key factor in mediating enteric virus pathogenicity. With the aim of analyzing whether human gut bacteria improve the inefficient replication of human rotavirus in mice, we performed fecal microbiota transplant (FMT) with healthy infants as donors in antibiotic-treated mice. We showed that a simple antibiotic treatment, irrespective of FMT, resulted in viral shedding for 6 days after challenge with the human rotavirus G1P[8] genotype Wa strain (RVwa). Rotavirus titers in feces were also significantly higher in antibiotic-treated animals with or without FMT but they were decreased in animals subject to self-FMT, where a partial re-establishment of specific bacterial taxons was evidenced. Microbial composition analysis revealed profound changes in the intestinal microbiota of antibiotic-treated animals, whereas some bacterial groups, including members of Lactobacillus, Bilophila, Mucispirillum, and Oscillospira, recovered after self-FMT. In antibiotic-treated and FMT animals where the virus replicated more efficiently, differences were observed in gene expression of immune mediators, such as IL1ß and CXCL15, as well as in the fucosyltransferase FUT2, responsible for H-type antigen synthesis in the small intestine. Collectively, our results suggest that antibiotic-induced microbiota depletion eradicates the microbial taxa that restrict human rotavirus infectivity in mice.

5.
J Clin Virol ; 142: 104943, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34391981

RESUMO

BACKGROUND: There is an imperative need to determine the durability of adaptive immunity to SARS-CoV-2. We enumerated SARS-CoV-2-reactive CD4+ and CD8+ T cells targeting S1 and M proteins and measured RBD-specific serum IgG over a period of 2-6 months after symptoms onset in a cohort of subjects who had recovered from severe clinical forms of COVID-19. PATIENTS AND METHODS: We recruited 58 patients (38 males and 20 females; median age, 62.5 years), who had been hospitalized with bilateral pneumonia, 60% with one or more comorbidities. IgG antibodies binding to SARS-CoV-2 RBD were measured by ELISA. SARS-CoV-2-reactive CD69+-expressing-IFNγ-producing-CD4+ and CD8+ T cells were enumerated in heparinized whole blood by flow cytometry for ICS. RESULTS: Detectable SARS-CoV-2-S1/M-reactive CD69+-IFN-γ CD4+ and CD8+ T cells were displayed in 17 (29.3%) and 6 (10.3%) subjects respectively, at a median of 84 days after onset of symptoms (range, 58-191 days). Concurrent comorbidities increased the risk (OR, 3.15; 95% CI, 1.03-9.61; P = 0.04) of undetectable T-cell responses in models adjusted for age, sex and hospitalization ward. Twenty-one out of the 35 patients (60%) had detectable RBD-specific serum IgGs at a median of 118 days (range, 60-145 days) after symptoms onset. SARS-CoV-2 RBD-specific IgG serum levels were found to drop significantly over time. CONCLUSION: A relatively limited number of subjects who developed severe forms of COVID-19 had detectable SARS-CoV-2-S1/M IFNγ CD4+ and CD8+ T cells at midterm after clinical diagnosis. Our data also indicated that serum levels of RBD-specific IgGs decline over time, becoming undetectable in some patients.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Feminino , Humanos , Imunidade , Masculino , Pessoa de Meia-Idade
7.
Gut Microbes ; 13(1): 1-20, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33938391

RESUMO

Human milk glycans present a unique diversity of structures that suggest different mechanisms by which they may affect the infant microbiome development. A humanized mouse model generated by infant fecal transplantation was utilized here to evaluate the impact of fucosyl-α1,3-GlcNAc (3FN), fucosyl-α1,6-GlcNAc, lacto-N-biose (LNB) and galacto-N-biose on the fecal microbiota and host-microbiota interactions. 16S rRNA amplicon sequencing showed that certain bacterial genera significantly increased (Ruminococcus and Oscillospira) or decreased (Eubacterium and Clostridium) in all disaccharide-supplemented groups. Interestingly, cluster analysis differentiates the consumption of fucosyl-oligosaccharides from galactosyl-oligosaccharides, highlighting the disappearance of Akkermansia genus in both fucosyl-oligosaccharides. An increment of the relative abundance of Coprococcus genus was only observed with 3FN. As well, LNB significantly increased the relative abundance of Bifidobacterium, whereas the absolute levels of this genus, as measured by quantitative real-time PCR, did not significantly increase. OTUs corresponding to the species Bifidobacterium longum, Bifidobacterium adolescentis and Ruminococcus gnavus were not present in the control after the 3-week intervention, but were shared among the donor and specific disaccharide groups, indicating that their survival is dependent on disaccharide supplementation. The 3FN-feeding group showed increased levels of butyrate and acetate in the colon, and decreased levels of serum HDL-cholesterol. 3FN also down-regulated the pro-inflammatory cytokine TNF-α and up-regulated the anti-inflammatory cytokines IL-10 and IL-13, and the Toll-like receptor 2 in the large intestine tissue. The present study revealed that the four disaccharides show efficacy in producing beneficial compositional shifts of the gut microbiota and in addition, the 3FN demonstrated physiological and immunomodulatory roles.

8.
Pathogens ; 10(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925924

RESUMO

Rotavirus is the leading cause of severe acute childhood gastroenteritis, responsible for more than 128,500 deaths per year, mainly in low-income countries. Although the mortality rate has dropped significantly since the introduction of the first vaccines around 2006, an estimated 83,158 deaths are still preventable. The two main vaccines currently deployed, Rotarix and RotaTeq, both live oral vaccines, have been shown to be less effective in developing countries. In addition, they have been associated with a slight risk of intussusception, and the need for cold chain maintenance limits the accessibility of these vaccines to certain areas, leaving 65% of children worldwide unvaccinated and therefore unprotected. Against this backdrop, here we review the main vaccines under development and the state of the art on potential alternatives.

9.
Eur J Clin Microbiol Infect Dis ; 40(3): 485-494, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33404891

RESUMO

Whether antibody levels measured by commercially available enzyme or chemiluminescent immunoassays targeting the SARS-CoV-2 spike (S) protein can act as a proxy for serum neutralizing activity remains to be established for many of these assays. We evaluated the degree of correlation between neutralizing antibodies (NtAb) binding the SARS-CoV-2 spike (S) protein and SARS-CoV-2-S-IgG levels measured by four commercial immunoassays in sera drawn from hospitalized COVID-19 patients. Ninety sera from 51 hospitalized COVID-19 patients were tested by a pseudotyped virus neutralization assay, the LIAISON SARS-CoV-2 S1/S2 IgG, the Euroimmun SARS-CoV-2 IgG ELISA, the MAGLUMI 2019-nCoV IgG, and the COVID-19 ELISA IgG assays. Overall, the results obtained with the COVID-19 ELISA IgG test showed the highest agreement with the NtAb assay (κ, 0.85; 95% CI, 0.63-1). The most sensitive tests were the pseudotyped virus NtAb assay and the COVID-19 ELISA IgG assay (92.2% for both). Overall, the degree correlation between antibody titers resulting in 50% virus neutralization (NtAb50) in the pseudotyped virus assay and SARS-CoV-2 IgG levels was strong for the Euroimmun SARS-CoV-2 IgG ELISA (rho = 0.73) and moderate for the remaining assays (rho = 0.48 to 0.59). The kinetic profile of serum NtAb50 titers could not be reliably predicted by any of the SARS-CoV-2 IgG immunoassays. The suitability of SARS-CoV-2-S-IgG commercial immunoassays for inferring neutralizing activity of sera from hospitalized COVID-19 patients varies widely across tests and is influenced by the time of sera collection after the onset of symptoms.


Assuntos
Anticorpos Neutralizantes/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Imunoensaio/métodos , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Idoso , Anticorpos Antivirais/sangue , COVID-19/sangue , Feminino , Hospitalização , Humanos , Imunoglobulina G/sangue , Cinética , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Sensibilidade e Especificidade
10.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498321

RESUMO

The gut microbiota has emerged as a key factor in the pathogenesis of intestinal viruses, including enteroviruses, noroviruses and rotaviruses (RVs), where stimulatory and inhibitory effects on infectivity have been reported. With the aim of determining whether members of the microbiota interact with RVs during infection, a combination of anti-RV antibody labeling, fluorescence-activated cell sorting and 16S rRNA amplicon sequencing was used to characterize the interaction between specific bacteria and RV in stool samples of children suffering from diarrhea produced by G1P[8] RV. The genera Ruminococcus and Oxalobacter were identified as RV binders in stools, displaying enrichments between 4.8- and 5.4-fold compared to samples nonlabeled with anti-RV antibodies. In vitro binding of the G1P[8] Wa human RV strain to two Ruminococcus gauvreauii human isolates was confirmed by fluorescence microscopy. Analysis in R. gauvreauii with antibodies directed to several histo-blood group antigens (HBGAs) indicated that these bacteria express HBGA-like substances on their surfaces, which can be the target for RV binding. Furthermore, in vitro infection of the Wa strain in differentiated Caco-2 cells was significantly reduced by incubation with R. gauvreauii. These data, together with previous findings showing a negative correlation between Ruminococcus levels and antibody titers to RV in healthy individuals, suggest a pivotal interaction between this bacterial group and human RV. These results reveal likely mechanisms of how specific bacterial taxa of the intestinal microbiota could negatively affect RV infection and open new possibilities for antiviral strategies.


Assuntos
Microbioma Gastrointestinal , Infecções por Rotavirus/microbiologia , Rotavirus/metabolismo , Ruminococcus/metabolismo , Proteínas de Bactérias/metabolismo , Células CACO-2 , Pré-Escolar , Humanos , Intestinos/microbiologia , Intestinos/virologia , Ligação Proteica , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia , Ruminococcus/patogenicidade
11.
J Med Virol ; 93(4): 2301-2306, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33236799

RESUMO

Assessment of commercial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunoassays for their capacity to provide reliable information on sera neutralizing activity is an emerging need. We evaluated the performance of two commercially available lateral flow immunochromatographic assays (LFIC; Wondfo SARS-CoV-2 Antibody test and the INNOVITA 2019-nCoV Ab test) in comparison with a SARS-CoV-2 neutralization pseudotyped assay for coronavirus disease 2019 (COVID-19) diagnosis in hospitalized patients and investigate whether the intensity of the test band in LFIC associates with neutralizing antibody (NtAb) titers. Ninety sera were included from 51 patients with moderate to severe COVID-19. A green fluorescent protein (GFP) reporter-based pseudotyped neutralization assay (vesicular stomatitis virus coated with SARS-CoV-2 spike protein) was used. Test line intensity was scored using a 4-level scale (0 to 3+). The overall sensitivity of LFIC assays was 91.1% for the Wondfo SARS-CoV-2 Antibody test, 72.2% for the INNOVITA 2019-nCoV IgG, 85.6% for the INNOVITA 2019-nCoV IgM, and 92.2% for the NtAb assay. Sensitivity increased for all assays in sera collected beyond day 14 after symptoms onset (93.9%, 79.6%, 93.9%, and 93.9%, respectively). Reactivities equal to or more intense than the positive control line (≥2+) in the Wondfo assay had a negative predictive value of 100% and a positive predictive value of 96.4% for high NtAb50 titers (≥1/160). Our findings support the use of LFIC assays evaluated herein, particularly the Wondfo test, for COVID-19 diagnosis. We also find evidence that these rapid immunoassays can be used to predict high SARS-CoV-2-S NtAb50 titers.


Assuntos
Anticorpos Neutralizantes/sangue , Teste para COVID-19/métodos , COVID-19/imunologia , Imunoensaio/métodos , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/diagnóstico , COVID-19/virologia , Proteínas de Fluorescência Verde , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Glicoproteína da Espícula de Coronavírus/imunologia
12.
J Clin Virol ; 131: 104611, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32882666

RESUMO

BACKGROUND: The involvement of SARS-CoV-2 antibodies in mediating immunopathogenetic events in COVID-19 patients has been suggested. By using several experimental approaches, we investigated the potential association between SARS-CoV-2 IgGs recognizing the spike (S) protein receptor-binding domain (RBD), neutralizing antibodies (NtAb) targeting S, and COVID-19 severity. PATIENTS AND METHODS: This unicenter, retrospective, observational study included 51 hospitalized patients (24 at the intensive care unit; ICU). A total of 93 sera from these patients collected at different time points from the onset of symptoms were analyzed. SARS-CoV-2 RBD IgGs were quantitated by ELISA and NtAb50 titers were measured in a GFP reporterbased pseudotyped virus platform. Demographic and clinical data, complete blood counts, as well as serum levels of ferritin, Dimer-D, C reactive protein (CRP), lactose dehydrogenase (LDH), and interleukin-6 (IL-6) were retrieved from clinical charts. RESULTS: The overall correlation between levels of both antibody measurements was good (Rho = 0.82; P = 0 < 0.001). SARS-CoV-2 RBD IgG and NtAb50 levels in sera collected up to day 30 after the onset of symptoms were comparable between ICU and non-ICU patients (P=>0.1). Four ICU patients died; two of these achieved NtAb50 titers ≥1/160 while the other two exhibited a 1/80 titer. Very weak (Rho=>0.0-<0.2) or weak (Rho=>0.2-<0.4) correlations were observed between anti-RBD IgGs, NtAb50, and serum levels pro-inflammatory biomarkers. CONCLUSIONS: The data presented herein do not support an association between SARS-CoV-2 RBD IgG or NtAb50 levels and COVID-19 severity.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Coronavirus/sangue , Hospitalização/estatística & dados numéricos , Inflamação/sangue , Pneumonia Viral/sangue , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Betacoronavirus , Sítios de Ligação de Anticorpos , Biomarcadores/sangue , COVID-19 , Infecções por Coronavirus/imunologia , Feminino , Humanos , Inflamação/virologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/imunologia , Estudos Retrospectivos , SARS-CoV-2 , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto Jovem
15.
Sci Rep ; 10(1): 7753, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385405

RESUMO

The aims of the present work were to determine the prevalence and titer of serum antibodies against several rotavirus VP8* proteins from different P genotypes in children and adults in Valencia, Spain; and to determine the role of the secretor status (FUT2G428A polymorphism) in the antibody response. The VP8* protein from the P[4], P[6], P[8], P[9], P[11], P[14] and P[25] genotypes were produced in E. coli. These proteins were tested with 88 serum samples from children (n = 41, 3.5 years old in average) and from adults (n = 47, 58 years old in average) by ELISA. A subset of 55 samples were genotyped for the FUT2G428A polymorphism and the antibody titers compared. The same subset of samples was also analysed by ELISA using whole rotavirus Wa particles (G1P[8]) as antigen. Ninety-three per cent of the samples were positive for at least one of the VP8* antigens. Differences in the IgG seroprevalence were found between children and adults for the P[4], P[8] and P[11] genotypes. Similarly, significant differences were found between adults and children in their antibody titers against the P[4], P[8], and P[11] VP8* genotypes, having the children higher antibody titers than adults. Interestingly, positive samples against rare genotypes such as P[11] (only in children), P[14] and P[25] were found. While no statistical differences in the antibody titers between secretors and non-secretors were found for any of the tested P genotypes studied, a higher statistic significant prevalence for the P[25] genotype was found in secretors compared to non-secretors. Significant differences in the antibody titers between secretors and non-secretors were found when the whole viral particles from the Wa rotavirus strain (G1P[8]) were used as the antigen.


Assuntos
Genótipo , Proteínas de Ligação a RNA/genética , Rotavirus/genética , Proteínas não Estruturais Virais/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Regulação Viral da Expressão Gênica , Humanos , Proteínas de Ligação a RNA/imunologia , Rotavirus/imunologia , Estudos Soroepidemiológicos , Espanha , Proteínas não Estruturais Virais/imunologia
16.
Bone Marrow Transplant ; 55(7): 1347-1356, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32205853

RESUMO

Cytomegalovirus (CMV) DNAemia and CMV disease have been reported as more frequent in patients undergoing haploidentical allogeneic hematopoietic stem cell transplantation (Haplo-HSCT) than in those receiving HLA-matched allografts. This could be due to impaired CMV-specific T-cell reconstitution. Here, we conducted a multicenter observational study to assess CMV pp65 and IE-1-specific T cells kinetics in patients undergoing unmanipulated Haplo-HSCT with posttransplant cyclophosphamide (PT/Cy-haplo) and compared it with patients allografted with HLA-matched donors. Plasma CMV DNA load was monitored by real-time PCR and enumeration of CMV-specific IFN-γ-producing CD8+ and CD4+ T cells was performed by flow cytometry for intracellular cytokine staining at days +30, +60, +90, and +180 after transplantation. CMV DNAemia developed in 62 patients, occurring with comparable frequency in PT/Cy-haplo and MRD/MUD recipients (P = 0.14). There were no significant differences across groups in the number of patients either displaying detectable CMV-specific CD8+ and CD4+ T-cell responses or acquiring CMV-specific T-cell levels conferring protection against subsequent infection. CMV-specific T-cell counts were comparable between groups at most time points examined, irrespective of whether CMV DNAemia occurred or not prior to monitoring. Collectively the data suggest that PT/Cy-haplo recipients may reconstitute CMV-specific T-cell immunity to the same extent as patients undergoing HLA-matched allo-HSCT.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Linfócitos T CD8-Positivos , Ciclofosfamida , Citomegalovirus , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Linfócitos T
17.
Microorganisms ; 8(3)2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32213877

RESUMO

The aim of the present study was to perform the molecular epidemiology of rotaviruses and noroviruses detected in sewage samples from a large wastewater facility from the city of Valencia, Spain. A total of 46 sewage samples were collected over a one-year period (September 2016 to September 2017). Norovirus and rotavirus were detected and quantified by RT-qPCR, genotyped by semi-nested RT-PCR and further characterized by sequencing and phylogenetic analyses. Noroviruses and rotaviruses were widely distributed in sewage samples (69.6% for norovirus GI, 76.0% norovirus GII, and 71.7% rotaviruses) and viral loads varied from 4.33 to 5.75 log PCRU/L for norovirus GI, 4.69 to 6.95 log PCRU/L for norovirus GII, and 4.08 to 6.92 log PCRU/L for rotavirus. Overall, 87.5% (28/32) of GI noroviruses could not be genotyped, 6.25% (2/32) of the samples contained GI.2 genotype, and another 6.25% (2/32) were positive for GI.4 genotype. The most common genotype of GII noroviruses was GII.2 (40%, 14/35), followed by GII.6 (8.6%, 3/35) and GII.17 (5.7%, 2/35) while the remaining GII strains could not be typed (45.7%, 16/35). Rotavirus VP4 genotype P[8] was the only one found in 19 out of 33 rotavirus-positive samples (57.7%). G2 was the most prevalent rotavirus VP7 genotype (15.2%, 5/33) followed by G3, G9, and G12, with two positive samples for each genotype (6.1%, 2/33). In one sample both G1 and G2 genotypes were detected simultaneously (3%). The results presented here show that the surveillance of noroviruses and rotaviruses in sewage is useful for the study of their transmission in the population and their molecular epidemiology.

18.
mBio ; 11(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937642

RESUMO

The survival of commensal bacteria in the human gut partially depends on their ability to metabolize host-derived molecules. The use of the glycosidic moiety of N-glycoproteins by bacteria has been reported, but the role of N-glycopeptides or glycoamino acids as the substrates for bacterial growth has not been evaluated. We have identified in Lactobacillus casei strain BL23 a gene cluster (alf-2) involved in the catabolism of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn (6'FN-Asn), a constituent of the core-fucosylated structures of mammalian N-glycoproteins. The cluster consists of the genes alfHC, encoding a major facilitator superfamily (MFS) permease and the α-l-fucosidase AlfC, and the divergently oriented asdA (aspartate 4-decarboxylase), alfR2 (transcriptional regulator), pepV (peptidase), asnA2 (glycosyl-asparaginase), and sugK (sugar kinase) genes. Knockout mutants showed that alfH, alfC, asdA, asnA2, and sugK are necessary for efficient 6'FN-Asn utilization. The alf-2 genes are induced by 6'FN-Asn, but not by its glycan moiety, via the AlfR2 regulator. The constitutive expression of alf-2 genes in an alfR2 strain allowed the metabolism of a variety of 6'-fucosyl-glycans. However, GlcNAc-Asn did not support growth in this mutant background, indicating that the presence of a 6'-fucose moiety is crucial for substrate transport via AlfH. Within bacteria, 6'FN-Asn is defucosylated by AlfC, generating GlcNAc-Asn. This glycoamino acid is processed by the glycosylasparaginase AsnA2. GlcNAc-Asn hydrolysis generates aspartate and GlcNAc, which is used as a fermentable source by L. casei These data establish the existence in a commensal bacterial species of an exclusive metabolic pathway likely to scavenge human milk and mucosal fucosylated N-glycopeptides in the gastrointestinal tract.IMPORTANCE The gastrointestinal tract accommodates more than 1014 microorganisms that have an enormous impact on human health. The mechanisms enabling commensal bacteria and administered probiotics to colonize the gut remain largely unknown. The ability to utilize host-derived carbon and energy resources available at the mucosal surfaces may provide these bacteria with a competitive advantage in the gut. Here, we have identified in the commensal species Lactobacillus casei a novel metabolic pathway for the utilization of the glycoamino acid fucosyl-α-1,6-N-GlcNAc-Asn, which is present in the core-fucosylated N-glycoproteins from mammalians. These results give insight into the molecular interactions between the host and commensal/probiotic bacteria and may help to devise new strategies to restore gut microbiota homeostasis in diseases associated with dysbiotic microbiota.


Assuntos
Asparagina/análogos & derivados , Fucose/análogos & derivados , Trato Gastrointestinal/microbiologia , Interações entre Hospedeiro e Microrganismos , Lactobacillus casei/metabolismo , Redes e Vias Metabólicas , Asparagina/metabolismo , Fucose/metabolismo , Humanos , Lactobacillus casei/genética , Família Multigênica , Probióticos , Simbiose
19.
Microbiol Resour Announc ; 8(34)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439694

RESUMO

Human noroviruses are responsible for most nonbacterial acute gastroenteritis cases. The GII.2, GII.4, and GII.17 genotypes of human noroviruses have recently arisen as the most frequent genotypes found in humans worldwide. We report here seven nearly complete genomes of these genotypes from patients with acute gastroenteritis in Valencia, Spain.

20.
PLoS Pathog ; 15(6): e1007865, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226167

RESUMO

Rotavirus is the leading agent causing acute gastroenteritis in young children, with the P[8] genotype accounting for more than 80% of infections in humans. The molecular bases for binding of the VP8* domain from P[8] VP4 spike protein to its cellular receptor, the secretory H type-1 antigen (Fuc-α1,2-Gal-ß1,3-GlcNAc; H1), and to its precursor lacto-N-biose (Gal-ß1,3-GlcNAc; LNB) have been determined. The resolution of P[8] VP8* crystal structures in complex with H1 antigen and LNB and site-directed mutagenesis experiments revealed that both glycans bind to the P[8] VP8* protein through a binding pocket shared with other members of the P[II] genogroup (i.e.: P[4], P[6] and P[19]). Our results show that the L-fucose moiety from H1 only displays indirect contacts with P[8] VP8*. However, the induced conformational changes in the LNB moiety increase the ligand affinity by two-fold, as measured by surface plasmon resonance (SPR), providing a molecular explanation for the different susceptibility to rotavirus infection between secretor and non-secretor individuals. The unexpected interaction of P[8] VP8* with LNB, a building block of type-1 human milk oligosaccharides, resulted in inhibition of rotavirus infection, highlighting the role and possible application of this disaccharide as an antiviral. While key amino acids in the H1/LNB binding pocket were highly conserved in members of the P[II] genogroup, differences were found in ligand affinities among distinct P[8] genetic lineages. The variation in affinities were explained by subtle structural differences induced by amino acid changes in the vicinity of the binding pocket, providing a fine-tuning mechanism for glycan binding in P[8] rotavirus.


Assuntos
Sistema ABO de Grupos Sanguíneos/química , Antígenos Virais/química , Proteínas de Ligação a RNA/química , Rotavirus/química , Proteínas não Estruturais Virais/química , Sítios de Ligação , Proteínas do Capsídeo/química , Linhagem Celular , Cristalografia por Raios X , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...