Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 11(45): 42280-42287, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31682096

RESUMO

Glass and glass-ceramic samples of metastable lithium thiophosphates with compositions of 70Li2S-30P2S5 and Li7P3S11 were controllably prepared by using a rapid assisted-microwave procedure in under 30 min. The rapid preparation times and weak coupling of the evacuated silica ampules with microwave radiation ensure minimal reactivity of the reactants and the container. The microwave-prepared samples display comparable conductivity values with more conventionally prepared (melt quenched) glass and glass-ceramic samples, on the order of 0.1 and 1 mS cm-1 at room temperature, respectively. Rietveld analysis of synchrotron X-ray diffraction data acquired with an internal standard quantitatively yields phase amounts of the glassy and amorphous components, establishing the tunable nature of the microwave preparation. X-ray photoelectron spectroscopy and Raman spectroscopy confirm the composition and the appropriate ratios of isolated and corner-sharing tetrahedra in these semicrystalline systems. Solid-state 7Li nuclear magnetic resonance (NMR) spectroscopy resolves the seven crystallographic Li sites in the crystalline compound into three main environments. The diffusion behavior of these Li environments as obtained from pulsed-field gradient NMR methods can be separated into one slow and one fast component. The rapid and tunable approach to the preparation of high quality "Li7P3S11" samples presented here coupled with detailed structural and compositional analysis opens the door to new and promising metastable solid electrolytes.

2.
ACS Appl Mater Interfaces ; 10(8): 7208-7213, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29457889

RESUMO

Rapid preparation utilizing assisted microwave heating permits significantly shorter preparation times for magnetocaloric compounds in the (Mn,Fe)2(P,Si) family, specifically samples of (Mn,Fe)2-δP0.5Si0.5 with starting compositions of δ = 0, 0.06, and 0.12. To fully understand the effects of processing and composition changes on structure and properties, these materials are characterized using synchrotron powder diffraction, neutron powder diffraction, electron microprobe analysis (EMPA), X-ray fluorescence (XRF), and magnetic measurements. The diffraction analysis reveals that increasing δ results in decreasing amounts of the common Heusler (Mn,Fe)3Si secondary phase. EMPA shows (Mn,Fe)2(P,Si) in all three samples to be Mn and P rich, whereas XRF demonstrates that the bulk material is Mn rich yet P deficient. Increasing δ brings the Mn/Fe and P/Si ratios closer to their starting values. Measurements of magnetic properties show an increase in saturation magnetization and ordering temperature with increasing δ, consistent with the increase in Fe and Si contents. Increasing δ also results in a decrease in thermal hysteresis and an increase in magnetic entropy change, the latter reaching values close to what have been previously reported on samples that take much longer to prepare.

3.
J Am Chem Soc ; 138(38): 12422-31, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27556742

RESUMO

Single crystals of Yb14-xRExMnSb11 (0 < x < 0.6, RE = Pr, Nd, Sm, and Gd) were synthesized by Sn flux. The compounds are iso-structural with Ca14AlSb11 (I41/acd), and their compositions were determined by wavelength-dispersive spectroscopy. Yb14MnSb11 is described as a partially screened d-metal Kondo system with the isolated [MnSb4](9-) tetrahedral cluster having a d(5) + hole configuration that results in four unpaired electrons measured in the ferromagnetically ordered phase. All of the Yb atoms in Yb14MnSb11 are present as Yb(2+), and the additional RE in Yb14-xRExMnSb11 is trivalent, contributing one additional electron to the structure and altering the magnetic properties. All compounds show ferromagnetic ordering in the range of 39-52 K attributed to the [MnSb4](9-) magnetic moment. Temperature-dependent DC magnetization measurements of Yb14-xPrxMnSb11 (0.44 ≤ x ≤ 0.56) show a sharp downturn right below the ferromagnetic transition temperature. Single-crystal neutron diffraction shows that this downturn is caused by a spin reorientation of the [MnSb4](9-) magnetic moments from the ab-plane to c-axis. The spin reorientation behavior, caused by large anisotropy, is also observed for similar x values of RE = Nd but not for RE = Sm or Gd at any value of x. In Pr-, Nd-, and Sm-substituted crystals, the saturation moments are consistent with ∼4 unpaired electrons attributed to [MnSb4](9-), indicating that local moments of Pr, Nd, and Sm do not contribute to the ferromagnetic order. In the case of RE = Pr, this is confirmed by neutron diffraction. In contrast, the magnetic measurements of RE = Gd show that the moments of Gd ferromagnetically order with the moments of [MnSb4](9-), and reduced screening of moments on Mn(2+) is evident. The sensitive variation of magnetic behavior is attributed to the various RE substitutions resulting in different interactions of the 4f-orbitals with the 3d-orbitals of Mn in the [MnSb4](9-) cluster conducted through 5p-orbitals of Sb.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA