RESUMO
The isothiourea-catalyzed enantioselective 1,6-conjugate addition of para-nitrophenyl esters to 2,6-disubstituted para-quinone methides is reported. para-Nitrophenoxide, generated in situ from initial N-acylation of the isothiourea by the para-nitrophenyl ester, is proposed to facilitate catalyst turnover in this transformation. A range of para-nitrophenyl ester products can be isolated, or derivatized in situ by addition of benzylamine to give amides at up to 99% yield. Although low diastereocontrol is observed, the diastereoisomeric ester products are separable and formed with high enantiocontrol (up to 94:6 er).
RESUMO
The sequential acylative kinetic resolution (KR) of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols using a packed bed microreactor loaded with the polystyrene-supported isothiourea, HyperBTM, is demonstrated in flow. The sequential KRs of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols exploits Horeau amplification, with each composed of two successive KR processes, with each substrate class significantly differing in the relative rate constants for each KR process. Optimisation of the continuous flow set-up for both C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diol substrate classes allowed isolation of reaction products in both high enantiopurity and yield. In addition to the successful KR of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols, the application of this process to the more conceptually-complex scenario involving the sequential KR of C1-symmetric (±)-1,3-anti-diols was demonstrated, which involves eight independent rate constants.
RESUMO
The N-heterocyclic carbene (NHC)-catalyzed formal [2 + 2] cycloaddition between α-aroyloxyaldehydes and trifluoroacetophenones, followed by ring opening with an amine or a reducing agent is described. The resulting ß-trifluoromethyl-ß-hydroxyamide and alcohol products are produced with reasonable diastereocontrol (typically ≈70:30 dr) and excellent enantioselectivity, and they can be isolated in moderate to good yield as a single diastereoisomer.
RESUMO
A highly enantioselective isothiourea-catalyzed acylative kinetic resolution (KR) of acyclic tertiary alcohols has been developed. Selectivity factors of up to 200 were achieved for the KR of tertiary alcohols bearing an adjacent ester substituent, with both reaction conversion and enantioselectivity found to be sensitive to the steric and electronic environment at the stereogenic tertiary carbinol centre. For more sterically congested alcohols, the use of a recently-developed isoselenourea catalyst was optimal, with equivalent enantioselectivity but higher conversion achieved in comparison to the isothiourea HyperBTM. Diastereomeric acylation transition state models are proposed to rationalize the origins of enantiodiscrimination in this process. This KR procedure was also translated to a continuous-flow process using a polymer-supported variant of the catalyst.
RESUMO
N,N,N',N'-Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross-coupling, C-H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron-catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular-level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA-iron(II)-alkyl species which undergo a controlled reduction to selectively form catalytically active styrene-stabilized iron(0)-alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.
Assuntos
Alcenos/química , Etilenodiaminas/química , Compostos Ferrosos/síntese química , Ferro/química , Catálise , Compostos Ferrosos/química , Estrutura Molecular , OxirreduçãoRESUMO
The use of silyl nitronates is reported for the isothiourea-catalyzed synthesis of γ-nitro-substituted silyl esters containing up to two contiguous stereocenters in good yields with excellent enantioselectivities (up to 93% yield and 99:1 er). The serendipitously discovered formation of silyl ester products in this reaction demonstrates a novel platform for catalyst turnover in α,ß-unsaturated acyl ammonium catalysis.
RESUMO
An isothiourea-catalysed enantioselective synthesis of novel tetrahydroindolizine derivatives is reported through a one-pot tandem sequential process. The application of 2-(pyrrol-1-yl)acetic acid in combination with either a trifluoromethyl enone or an α-keto-ß,γ-unsaturated ester in an enantioselective Michael addition-lactonisation process, followed by in situ ring-opening and cyclisation, led to a range of 24 tetrahydroindolizine derivatives containing three stereocentres in up to >95 : 5 dr and >99 : 1 er.
RESUMO
The enantioselective preparation of a range of perfluoroalkyl-substituted ß-lactones through an isothiourea (HyperBTM) catalysed reaction using symmetric anhydrides as ammonium enolate precursors and perfluoroalkylketones (RF = CF3, C2F5, C4F9) is reported. Following optimisation, high diastereo- and enantioselectivity was observed for ß-lactone formation using C2F5- and C4F9-substituted ketones at room temperature (26 examples, up to >95 : 5 dr and >99 : 1 er), whilst -78 °C was necessary for optimal dr and er with CF3-substituted ketones (11 examples, up to >95 : 5 dr and >99 : 1 er). Derivatisation of the ß-lactones through ring-opening, as well as a two-step conversion to give perfluoroalkyl-substituted oxetanes, is demonstrated without loss of stereochemical integrity. Density functional theory computations, alongside 13C natural abundance KIE studies, have been used to probe the reaction mechanism with a concerted asynchronous [2 + 2]-cycloaddition pathway favoured over a stepwise aldol-lactonisation process.
RESUMO
Iron-catalyzed hydromagnesiation of styrene derivatives offers a rapid and efficient method to generate benzylic Grignard reagents, which can be applied in a range of transformations to provide products of formal hydrofunctionalization. While iron-catalyzed methodologies exist for the hydromagnesiation of terminal alkenes, internal alkynes, and styrene derivatives, the underlying mechanisms of catalysis remain largely undefined. To address this issue and determine the divergent reactivity from established cross-coupling and hydrofunctionalization reactions, a detailed study of the bis(imino)pyridine iron-catalyzed hydromagnesiation of styrene derivatives is reported. Using a combination of kinetic analysis, deuterium labeling, and reactivity studies as well as in situ 57Fe Mössbauer spectroscopy, key mechanistic features and species were established. A formally iron(0) ate complex [ iPrBIPFe(Et)(CH2âCH2)]- was identified as the principle resting state of the catalyst. Dissociation of ethene forms the catalytically active species which can reversibly coordinate the styrene derivative and mediate a direct and reversible ß-hydride transfer, negating the necessity of a discrete iron hydride intermediate. Finally, displacement of the tridentate bis(imino)pyridine ligand over the course of the reaction results in the formation of a tris-styrene-coordinated iron(0) complex, which is also a competent catalyst for hydromagnesiation.
Assuntos
Complexos de Coordenação/química , Magnésio/química , Compostos Organometálicos/síntese química , Estirenos/química , Catálise , Ferro/química , Cinética , Ligantes , Piridinas/químicaRESUMO
An operationally simple isothiourea-catalysed acylative kinetic resolution of unprotected 1,1'-biaryl-2,2'-diol derivatives has been developed to allow access to axially chiral compounds in highly enantioenriched form (s values up to 190). Investigation of the reaction scope and limitations provided three key observations: i)â the diol motif of the substrate was essential for good conversion and high s values; ii)â the use of an α,α-disubstituted mixed anhydride (2,2-diphenylacetic pivalic anhydride) was critical to minimize diacylation and give high selectivity; iii)â the presence of substituents in the 3,3'-positions of the diol hindered effective acylation. This final observation was exploited for the highly regioselective acylative kinetic resolution of unsymmetrical biaryl diol substrates bearing a single 3-substituent. Based on the key observations identified, acylation transition state models have been proposed to explain the atropselectivity of this kinetic resolution.
RESUMO
During an investigation into the potential union of Lewis basic isothiourea organocatalysis and gold catalysis, the formation of gold-isothiourea complexes was observed. These novel gold complexes were formed in high yield and were found to be air- and moisture stable. A series of neutral and cationic chiral gold(I) and gold(III) complexes bearing enantiopure isothiourea ligands was therefore synthesized and fully characterized. The steric and electronic properties of the isothiourea ligands was assessed through calculation of their percent buried volume and the synthesis and analysis of novel iridium(I)-isothiourea carbonyl complexes. The novel gold(I)- and gold(III)-isothiourea complexes have been applied in preliminary catalytic and biological studies, and display promising preliminary levels of catalytic activity and potency towards cancerous cell lines and clinically relevant enzymes.
RESUMO
An isothiourea-catalysed Michael addition-annulation process using ß-fluoroalkyl-substituted α,ß-unsaturated aryl esters and a range of 2-acylbenzazoles is reported for the enantioselective synthesis of dihydropyranone and dihydropyridinone products bearing polyfluorinated stereocenters (29 examples, up to 98% yield, >99 : 1 er). The choice of aryl group of the aryl ester proved essential in determining reaction enantioselectivity and dihydropyranone : dihydropyridinone product selectivity. The aryloxide leaving group is shown to play a number of essential additional roles, operating (i) as a Brønsted base, circumventing the need for an auxiliary base; and (ii) as a Lewis base to catalyse the isomerisation of dihydropyranone products into thermodynamically-favoured dihydropyridinones. After optimisation, this isomerisation process was exploited for the selective synthesis of dihydropyridinone products using acylbenzothiazoles, and either dihydropyranone or dihydropyridinone products using acylbenzoxazoles. Finally, the phenol derivative, produced following protonation of the aryloxide, is proposed to act as a Brønsted acid, which promotes an isothiourea-catalysed kinetic resolution of benzoxazole-derived dihydropyranones.
RESUMO
A combination of experimental and computational studies have identified a C=Oâ â â isothiouronium interaction as key to efficient enantiodiscrimination in the kinetic resolution of tertiary heterocyclic alcohols bearing up to three potential recognition motifs at the stereogenic tertiary carbinol center. This discrimination was exploited in the isothiourea-catalyzed acylative kinetic resolution of tertiary heterocyclic alcohols (38 examples, sâ factors up to >200). The reaction proceeds at low catalyst loadings (generally 1â mol %) with either isobutyric or acetic anhydride as the acylating agent under mild conditions.
RESUMO
A new general concept for α,ß-unsaturated acyl ammonium catalysis is reported that uses p-nitrophenoxide release from an α,ß-unsaturated p-nitrophenyl ester substrate to facilitate catalyst turnover. This method was used for the enantioselective isothiourea-catalyzed Michael addition of nitroalkanes to α,ß-unsaturated p-nitrophenyl esters in generally good yield and with excellent enantioselectivity (27 examples, up to 79 % yield, 99:1 er). Mechanistic studies identified rapid and reversible catalyst acylation by the α,ß-unsaturated p-nitrophenyl ester, and a recently reported variable-time normalization kinetic analysis method was used to delineate the complex reaction kinetics.
RESUMO
The diastereo- and enantioselective synthesis of 2,3-disubstituted trans-2,3-dihydrobenzofuran derivatives (15 examples, up to 96 : 4 dr, 95 : 5 er) via intramolecular Michael addition has been developed using keto-enone substrates and a bifunctional tertiary amine-thiourea catalyst. This methodology was extended to include non-activated ketone pro-nucleophiles for the synthesis of 2,3-disubstituted indane and 3,4-disubstituted tetrahydrofuran derivatives.
Assuntos
Benzofuranos/síntese química , Tioureia/química , Aminas/química , Catálise , Técnicas de Química Sintética/métodos , Furanos/química , Cetonas/química , Estrutura Molecular , Solventes/química , Estereoisomerismo , TemperaturaRESUMO
Isothiourea-catalyzed annulations between 2-acyl benzazoles and α,ß-unsaturated acyl ammonium intermediates are selectively tuned to form either lactam or lactone heterocycles in good yields (up to 95%) and high ee (up to 99%) using benzothiazole or benzoxazole derivatives, respectively. Computation gives insight into the significant role of two 1,5-S···O interactions in controlling the structural preorganization and chemoselectivity observed within the lactam synthesis with benzothiazoles as nucleophiles. When using benzazoles the absence of a second stabilizing non-bonding 1,5-S···O interaction leads to a dominant C-H···O interaction in determining structural preorganization and lactone formation.
RESUMO
The highly regioselective iron-catalyzed formal hydrofunctionalization of styrene derivatives with a diverse range of electrophiles has been developed using a single, operationally simple hydromagnesiation procedure and only commercially available, bench-stable reagents. Using just 0.5 mol % FeCl2·4H2O and N,N,N',N'-tetramethylethylenediamine, hydromagnesiation and electrophilic trapping have been used to form new carbon-carbon bonds (13 examples) and carbon-heteroatom bonds (5 examples) including the products of formal cross-coupling reactions, hydroboration, hydroamination, hydrosilylation, and hydrofluorination.
RESUMO
The highly chemo-, regio-, and stereoselective synthesis of alkyl- and vinyl boronic esters with good functional group tolerance has been developed using in situ activation of a bench-stable iron(II) pre-catalyst and pinacolborane (16 examples, 45-95% yield, TOF up to 30,000 mol h(-1)). The first iron-catalysed alkene hydrogermylation is also reported.
RESUMO
The iron-catalyzed hydrocarboxylation of aryl alkenes has been developed using a highly active bench-stable iron(II) precatalyst to give α-aryl carboxylic acids in excellent yields and with near-perfect regioselectivity. Using just 1 mol % FeCl(2), bis(imino)pyridine 6 (1 mol %), CO(2) (atmospheric pressure), and a hydride source (EtMgBr, 1.2 equiv), a range of sterically and electronically differentiated aryl alkenes were transformed to the corresponding α-aryl carboxylic acids (up to 96% isolated yield). The catalyst was found to be equally active with a loading of 0.1 mol %. Preliminary mechanistic investigations show that an iron-catalyzed hydrometalation is followed by transmetalation and reaction with the electrophile (CO(2)).
Assuntos
Alcenos/química , Dióxido de Carbono/química , Ácidos Carboxílicos/síntese química , Hidrocarbonetos Aromáticos/síntese química , Ferro/química , Estireno/química , Alcenos/síntese química , Dióxido de Carbono/síntese química , Ácidos Carboxílicos/química , Catálise , Hidrocarbonetos Aromáticos/química , Estereoisomerismo , Estireno/síntese químicaRESUMO
An iron-catalysed, hydride-mediated reductive cross-coupling reaction has been developed for the preparation of alkanes. Using a bench-stable iron(II) pre-catalyst, reductive cross-coupling of vinyl iodides, bromides and chlorides with aryl- and alkyl Grignard reagents successfully gave the products of formal sp(3)-sp(3) cross-coupling reactions.