Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Int J Sports Med ; 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523202

RESUMO

This study investigated the change in bone and body composition characteristics of elite football players and recreationally active control participants across the course of a season. Fortysix participants (20 footballers and 26 recreationally active controls) were assessed by dual-energy x-ray absorptiometry and peripheral Quantitative Computed Tomography for a range of bone and body composition characteristics at four points over the course of a competitive season. Multilevel modelling was used to examine changes. Footballers had higher characteristics than controls for 24 out of 29 dual-energy x-ray absorptiometry and peripheral Quantitative Computed Tomography variables (all p<0.05). However, there was also significant random inter-individual variation in baseline values for all variables, for both footballers and controls (p < 0.05). Wholebody bone mineral density, leg and whole-body bone mineral content, tibial bone mass and area (38%) increased across the season in footballers (p < 0.05), and there was significant random inter-individual variation in the rate of increase of leg and whole-body bone mineral content (p<0.05). Whole-body bone mineral density, leg and whole-body bone mineral content, tibial bone mass and area (38%) increased over the course of the season in elite football players. The modelling information on expected changes in bone characteristics provides practitioners with a method of identifying those with abnormal bone response to football training and match-play.

2.
Bone ; 160: 116426, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35470123

RESUMO

Military training increases tibial density and size, but it is unknown if men and women adapt similarly to the same arduous training. Seventy-seven men and 57 women not using hormonal contraceptives completed this study. Tibial volumetric bone mineral density (vBMD) and geometry were measured by peripheral quantitative computed tomography (4%, 14%, 38%, and 66% sites) at the start (week 1) and end (week 14) of British Army basic training. Training increased trabecular vBMD (4% site in men; 4% and 14% sites in women), cortical vBMD (38% site), total area (14% and 38% sites), trabecular area (14% site), cortical area and thickness (14%, 38%, and 66% sites), periosteal perimeter (14%, 38%, and 66% sites), and all indices of estimated strength (14%, 38%, and 66% sites); and, decreased endosteal perimeter (66% site) in men and women (all p ≤ 0.045). The increase in trabecular vBMD (4% and 14% sites) was greater in women and the increases in cortical area and strength (38% site) were greater in men (sex × time interactions, all p ≤ 0.047). P1NP increased and ßCTX and sclerostin decreased during training in men and women, consistent with adaptive bone formation. PTH decreased in men but increased in women. Arduous weight-bearing activity increased the density and size of the tibia after 14 weeks. Women experienced similar tibial adaptations as men, however, a greater increase in trabecular vBMD in women compared with men could be due to higher loading at this skeletal site in women, whereas the small increase in cortical area could be due to inhibitory effects of oestradiol.

3.
Int J Sport Nutr Exerc Metab ; 32(3): 195-203, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35393372

RESUMO

Military training is characterized by high daily energy expenditures which are difficult to match with energy intake, potentially resulting in negative energy balance (EB) and low energy availability (EA). The aim of this study was to quantify EB and EA during British Army Officer Cadet training. Thirteen (seven women) Officer Cadets (mean ± SD: age 24 ± 3 years) volunteered to participate. EB and EA were estimated from energy intake (weighing of food and food diaries) and energy expenditure (doubly labeled water) measured in three periods of training: 9 days on-camp (CAMP), a 5-day field exercise (FEX), and a 9-day mixture of both CAMP and field-based training (MIX). Variables were compared by condition and gender with a repeated-measures analysis of variance. Negative EB was greatest during FEX (-2,197 ± 455 kcal/day) compared with CAMP (-692 ± 506 kcal/day; p < .001) and MIX (-1,280 ± 309 kcal/day; p < .001). EA was greatest in CAMP (23 ± 10 kcal·kg free-fat mass [FFM]-1·day-1) compared with FEX (1 ± 16 kcal·kg FFM-1·day-1; p = .002) and MIX (10 ± 7 kcal·kg FFM-1·day-1; p = .003), with no apparent difference between FEX and MIX (p = .071). Irrespective of condition, there were no apparent differences between gender in EB (p = .375) or EA (p = .385). These data can be used to inform evidenced-based strategies to manage EA and EB during military training, and enhance the health and performance of military personnel.

4.
Int J Sport Nutr Exerc Metab ; 32(3): 204-213, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35294923

RESUMO

Dietary intake and physical activity impact performance and adaptation during training. The aims of this study were to compare energy and macronutrient intake during British Army Officer Cadet training with dietary guidelines and describe daily distribution of energy and macronutrient intake and estimated energy expenditure. Thirteen participants (seven women) were monitored during three discrete periods of military training for 9 days on-camp, 5 days of field exercise, and 9 days of a mixture of the two. Dietary intake was measured using researcher-led food weighing and food diaries, and energy expenditure was estimated from wrist-worn accelerometers. Energy intake was below guidelines for men (4,600 kcal/day) and women (3,500 kcal/day) during on-camp training (men = -16% and women = -9%), field exercise (men = -33% and women = -42%), and combined camp and field training (men and women both -34%). Carbohydrate intake of men and women were below guidelines (6 g·kg-1·day-1) during field exercise (men = -18% and women = -37%) and combined camp and field training (men = -33% and women = -39%), respectively. Protein intake was above guidelines (1.2 kcal·kg-1·day-1) for men and women during on-camp training (men = 48% and women = 39%) and was below guidelines during field exercise for women only (-27%). Energy and macronutrient intake during on-camp training centered around mealtimes with a discernible sleep/wake cycle for energy expenditure. During field exercise, energy and macronutrient intake were individually variable, and energy expenditure was high throughout the day and night. These findings could be used to inform evidenced-based interventions to change the amount and timing of energy and macronutrient intake around physical activity to optimize performance and adaptations during military training.

5.
Exerc Sport Sci Rev ; 50(1): 14-24, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669626

RESUMO

Best-practice guidance and management of pregnant and postpartum elite athletes and women in arduous occupations is limited by the lack of high-quality evidence available within these populations. We have summarized the adaptations and implications of pregnancy and childbirth, proposed a novel integrative concept to address these changes, and made recommendations to progress research in this area.


Assuntos
Atletas , Ocupações , Feminino , Humanos , Gravidez
6.
J Strength Cond Res ; 36(5): 1297-1303, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32398631

RESUMO

ABSTRACT: Vine, CA, Coakley, SL, Blacker, SD, Doherty, J, Hale, B, Walker, EF, Rue, CA, Lee, BJ, Flood, TR, Knapik, JJ, Jackson, S, Greeves, JP, and Myers, SD. Accuracy of metabolic cost predictive equations during military load carriage. J Strength Cond Res 36(5): 1297-1303, 2022-To quantify the accuracy of 5 equations to predict the metabolic cost of load carriage under ecologically valid military speed and load combinations. Thirty-nine male serving infantry soldiers completed thirteen 20-minute bouts of overground load carriage comprising 2 speeds (2.5 and 4.8 km·h-1) and 6 carried equipment load combinations (25, 30, 40, 50, 60, and 70 kg), with 22 also completing a bout at 5.5 km·h-1 carrying 40 kg. For each speed-load combination, the metabolic cost was measured using the Douglas bag technique and compared with the metabolic cost predicted from 5 equations; Givoni and Goldman, 1971 (GG), Pandolf et al. 1997 (PAN), Santee et al. 2001 (SAN), American College of Sports Medicine 2013 (ACSM), and the Minimum-Mechanics Model (MMM) by Ludlow and Weyand, 2017. Comparisons between measured and predicted metabolic cost were made using repeated-measures analysis of variance and limits of agreement. All predictive equations, except for PAN, underpredicted the metabolic cost for all speed-load combinations (p < 0.001). The PAN equation accurately predicted metabolic cost for 40 and 50 kg at 4.8 km·h-1 (p > 0.05), underpredicted metabolic cost for all 2.5 km·h-1 speed-load combinations as well as 25 and 30 kg at 4.8 km·h-1, and overpredicted metabolic cost for 60 and 70 kg at 4.8 km·h-1 (p < 0.001). Most equations (GG, SAN, ACSM, and MMM) underpredicted metabolic cost while one (PAN) accurately predicted at moderate loads and speeds, but overpredicted or underpredicted at other speed-load combinations. Our findings indicate that caution should be applied when using these predictive equations to model military load carriage tasks.


Assuntos
Militares , Esportes , Metabolismo Energético , Humanos , Masculino , Caminhada , Suporte de Carga
7.
Eur J Sport Sci ; 22(1): 99-111, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33840352

RESUMO

Combat roles are physically demanding and expose service personnel to operational stressors such as high levels of physical activity, restricted nutrient intake, sleep loss, psychological stress, and environmental extremes. Women have recently integrated into combat roles, but our knowledge of the physical, physiological, and psycho-cognitive responses to these operational stressors in women is limited. The aim of this narrative review was to evaluate the evidence for sex-specific physical, physiological, and psycho-cognitive responses to real, and simulated, military operational stress. Studies examining physical and cognitive performance, body composition, metabolism, hypothalamic-pituitary-gonadal axis, and psychological health outcomes were evaluated. These studies report that women expend less energy and lose less body mass and fat-free mass, but not fat mass, than men. Despite having similar physical performance decrements as men during operational stress, women experience greater physiological strain than men completing the same physical tasks, but this may be attributed to differences in fitness. From limited data, military operational stress suppresses hypothalamic-pituitary-gonadal, but not hypothalamic-pituitary-adrenal, axis function in both sexes. Men and women demonstrate different psychological and cognitive responses to operational stress, including disturbances in mood, with women having a higher risk of post-traumatic stress symptoms compared with men. Based on current evidence, separate strategies to maximize selection and combat training are not warranted until further data directly comparing men and women are available. However, targeted exercise training programmes may be advisable to offset the physical performance gap between sexes and optimize performance prior to inevitable declines caused by intense military operations.


Assuntos
Militares , Caracteres Sexuais , Composição Corporal , Cognição , Feminino , Humanos , Masculino , Militares/psicologia , Desempenho Físico Funcional , Estresse Fisiológico
8.
Eur J Sport Sci ; 22(1): 4-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34269162

RESUMO

Mechanical loading leads to adaptive bone formation - the formation of new bone on existing skeletal surfaces - which increases bone strength and fatigue resistance. The same mechanical loading can also cause microdamage to bone and development of a stress fracture through targeted remodelling. Stress fractures are common in military recruits and cause significant morbidity, lost training time, and discharge from military service. This narrative review proposes strategies to promote adaptive bone formation as a novel approach to mitigate the risk of stress fracture injuries during arduous military training. Exercise that is unaccustomed, dynamic, high-impact, multidirectional, intermittent, and includes extended rest periods to restore bone mechanosensitivity, is most osteogenic. New bone formation can take up to one year to mineralize, and so new exercise training programmes should be initiated well in advance of military activities with high risk of stress fracture. Bone mechanosensitivity is highest in adolescence, before puberty, and so increasing physical activity in youth is likely to protect skeletal health in later life, including for those in the military. Recent data show that adaptive bone formation takes place during initial military training. Adaptive bone formation can also be supported with adequate sleep, vitamin D, calcium, and energy availability. Further evidence on how strategies to promote adaptive bone formation affect stress fracture risk are required. Adaptive bone formation can be optimized with a range of training and nutritional strategies to help create a resilient skeleton, which may protect against stress fracture throughout military service.


Assuntos
Fraturas de Estresse , Militares , Adolescente , Exercício Físico , Fraturas de Estresse/etiologia , Fraturas de Estresse/prevenção & controle , Humanos , Osteogênese , Vitamina D
9.
J Sci Med Sport ; 24(10): 995-1001, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34452842

RESUMO

Appropriate nutrition recommendations are required to optimise the health and performance of military personnel, yet limited data are available on whether male and female military personnel have different nutrition requirements. OBJECTIVES: To consider the evidence for sex-specific nutrition requirements to optimise the health and performance of military personnel. DESIGN: Narrative review. METHODS: Published literature was reviewed, with a focus on sex-specific requirements, in the following areas: nutrition for optimising muscle mass and function, nutrition during energy deficit, and nutrition for reproductive and bone health. RESULTS: There are limited data on sex differences in protein requirements but extant data suggest that, despite less muscle mass, on average, in women, sex-specific protein feeding strategies are not required to optimise muscle mass in military-aged individuals. Similarly, despite sex differences in metabolic and endocrine responses to energy deficit, current data do not suggest a requirement for sex-specific feeding strategies during energy deficit. Energy deficit impairs health and performance, most notably bone and reproductive health and these impairments are greater for women. Vitamin D, iron and calcium are important nutrients to protect the bone health of female military personnel due to increased risk of stress fracture. CONCLUSIONS: Women have an increased incidence of bone injuries, less muscle mass and are more susceptible to the negative effects of energy deficit, including compromised reproductive health. However, there are limited data on sex differences in response to various nutrition strategies designed to improve these elements of health and performance. Future studies should evaluate whether sex-specific feeding recommendations are required.


Assuntos
Militares , Necessidades Nutricionais , Desempenho Físico Funcional , Feminino , Humanos , Fatores Sexuais
10.
Trials ; 22(1): 580, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461961

RESUMO

BACKGROUND: Stress fractures are a common and potentially debilitating overuse injury to bone and occur frequently among military recruits and athletes. Recovery from a lower body stress fracture typically requires several weeks of physical rehabilitation. Teriparatide, a recombinant form of the bioactive portion of parathyroid hormone (1-34 amino acids), is used to treat osteoporosis, prevent osteoporotic fractures, and enhance fracture healing due to its net anabolic effect on bone. The study aim is to investigate the effect of teriparatide on stress fracture healing in young, otherwise healthy adults undergoing military training. METHODS: In a two-arm, parallel, prospective, randomised controlled, intention-to-treat trial, Army recruits (n = 136 men and women, 18-40 years) with a magnetic resonance imaging (MRI) diagnosed lower body stress fracture (pelvic girdle, sacrum, coccyx, or lower limb) will be randomised to receive either usual Army standard care, or teriparatide and usual Army standard care. Teriparatide will be self-administered by subcutaneous injections (20 µg/day) for 16 weeks, continuing to 24 weeks where a fracture remains unhealed at week 16. The primary outcome will be the improvement in radiological healing by two grades or more, or reduction to grade zero, 8 weeks after randomisation, assessed using Fredericson grading of MRI by radiologists blind to the randomisation. Secondary outcomes will be time to radiological healing, assessed by MRI at 8, 10, 12, 14, 16, 20 and 24 weeks, until healed; time to clinical healing, assessed using a clinical severity score of injury signs and symptoms; time to discharge from Army physical rehabilitation; pain, assessed by visual analogue scale; health-related quality of life, using the Short Form (36) Health Survey; and adverse events. Exploratory outcomes will include blood and urine biochemistry; bone density and morphology assessed using dual-energy X-ray absorptiometry, peripheral quantitative computed tomography (pQCT), and high-resolution pQCT; physical activity measured using accelerometers; and long-term future fracture rate. DISCUSSION: This study will evaluate whether teriparatide, in addition to standard care, is more effective for stress fracture healing than standard care alone in Army recruits who have sustained a lower body stress fracture. TRIAL REGISTRATION: ClinicalTrials.gov NCT04196855 . Registered on 12 December 2019.


Assuntos
Conservadores da Densidade Óssea , Fraturas de Estresse , Conservadores da Densidade Óssea/efeitos adversos , Feminino , Consolidação da Fratura , Fraturas de Estresse/diagnóstico por imagem , Fraturas de Estresse/tratamento farmacológico , Humanos , Masculino , Estudos Prospectivos , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Teriparatida/efeitos adversos , Adulto Jovem
11.
Comput Biol Med ; 134: 104506, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34090016

RESUMO

OBJECTIVES: We aimed to determine the agreement between actual and predicted core body temperature, using the Heat Strain Decision Aid (HSDA), in non-Ground Close Combat (GCC) personnel wearing multi terrain pattern clothing during two stages of load carriage in temperate conditions. DESIGN: Cross-sectional. METHODS: Sixty participants (men = 49, women = 11, age 31 ± 8 years; height 171.1 ± 9.0 cm; body mass 78.1 ± 11.5 kg) completed two stages of load carriage, of increasing metabolic rate, as part of the development of new British Army physical employment standards (PES). An ingestible gastrointestinal sensor was used to measure core temperature. Testing was completed in wet bulb globe temperature conditions; 1.2-12.6 °C. Predictive accuracy and precision were analysed using individual and group mean inputs. Assessments were evaluated by bias, limits of agreement (LoA), mean absolute error (MAE), and root mean square error (RMSE). Accuracy was evaluated using a prediction bias of ±0.27 °C and by comparing predictions to the standard deviation of the actual core temperature. RESULTS: Modelling individual predictions provided an acceptable level of accuracy based on bias criterion; where the total of all trials bias ± LoA was 0.08 ± 0.82 °C. Predicted values were in close agreement with the actual data: MAE 0.37 °C and RMSE 0.46 °C for the collective data. Modelling using group mean inputs were less accurate than using individual inputs, but within the mean observed. CONCLUSION: The HSDA acceptably predicts core temperature during load carriage to the new British Army non-GCC PES, in temperate conditions.


Assuntos
Temperatura Alta , Militares , Adulto , Temperatura Corporal , Estudos Transversais , Técnicas de Apoio para a Decisão , Feminino , Humanos , Masculino , Roupa de Proteção , Adulto Jovem
12.
Am J Physiol Endocrinol Metab ; 321(2): E281-E291, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191631

RESUMO

Hypothalamic-pituitary-gonadal (HPG) axis suppression in exercising women can be caused by low energy availability (EA), but the impact of a real-world, multistressor training environment on reproductive and metabolic function is unknown. This study aimed to characterize reproductive and metabolic adaptation in women undertaking basic military training. A prospective cohort study in women undertaking 11-month initial military training (n = 47) was carried out. Dynamic low-dose 1-h gonadotrophin-releasing hormone (GnRH) tests were completed after 0 and 7 mo of training. Urine progesterone was sampled weekly throughout. Body composition (dual X-ray absorptiometry), fasting insulin resistance (homeostatic modeling assessment 2, HOMA2), leptin, sex steroids, anti-Müllerian hormone (AMH), and inhibin B were measured after 0, 7, and 11 mo with an additional assessment of body composition at 3 mo. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) responses were suppressed after 7 mo (both P < 0.001). Among noncontraceptive users (n = 20), 65% had regular (23-35 days) cycles preenrollment, falling to 24% by 7 mo of training. Of women in whom urine progesterone was measured (n = 24), 87% of cycles showed no evidence of ovulation. There was little change in AMH, LH, and estradiol, although inhibin B and FSH increased (P < 0.05). Fat mass fluctuated during training but at month 11 was unchanged from baseline. Fat-free mass did not change. Visceral adiposity, HOMA2, and leptin increased (all P < 0.001). HPG axis suppression with anovulation occurred in response to training without evidence of low EA. Increased insulin resistance may have contributed to the observed pituitary and ovarian dysfunction. Our findings are likely to represent an adaptive response of reproductive function to the multistressor nature of military training.NEW & NOTEWORTHY We characterized reproductive endocrine adaptation to prolonged arduous multistressor training in women. We identified marked suppression of hypothalamic-pituitary-gonadal (HPG) axis function during training but found no evidence of low energy availability despite high energy requirements. Our findings suggest a complex interplay of psychological and environmental stressors with suppression of the HPG axis via activation of the hypothalamic-pituitary adrenal (HPA) axis. The neuroendocrine impact of nonexercise stressors on the HPG axis during arduous training should be considered.


Assuntos
Adaptação Fisiológica , Fenômenos Reprodutivos Fisiológicos , Estresse Psicológico/metabolismo , Adulto , Composição Corporal , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Progesterona/metabolismo , Estudos Prospectivos , Adulto Jovem
13.
J Bone Miner Res ; 36(7): 1300-1315, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33856703

RESUMO

Bone adapts to unaccustomed, high-impact loading but loses mechanosensitivity quickly. Short periods of military training (≤12 weeks) increase the density and size of the tibia in women. The effect of longer periods of military training, where the incidence of stress fracture is high, on tibial macrostructure and microarchitecture in women is unknown. This observational study recruited 51 women (age 19 to 30 years) at the start of 44 weeks of British Army Officer training. Tibial volumetric bone mineral density (vBMD), geometry, and microarchitecture were measured by high-resolution peripheral quantitative computed tomography (HRpQCT). Scans of the right tibial metaphysis (4% site) and diaphysis (30% site) were performed at weeks 1, 14, 28, and 44. Measures of whole-body areal bone mineral density (aBMD) were obtained using dual-energy X-ray absorptiometry (DXA). Blood samples were taken at weeks 1, 28, and 44, and were analyzed for markers of bone formation and resorption. Trabecular vBMD increased from week 1 to 44 at the 4% site (3.0%, p < .001). Cortical vBMD decreased from week 1 to 14 at the 30% site (-0.3%, p < .001). Trabecular area decreased at the 4% site (-0.4%); trabecular bone volume fraction (3.5%), cortical area (4.8%), and cortical thickness (4.0%) increased at the 4% site; and, cortical perimeter increased at the 30% site (0.5%) from week 1 to 44 (p ≤ .005). Trabecular number (3.5%) and thickness (2.1%) increased, and trabecular separation decreased (-3.1%), at the 4% site from week 1 to 44 (p < .001). Training increased failure load at the 30% site from week 1 to 44 (2.5%, p < .001). Training had no effect on aBMD or markers of bone formation or resorption. Tibial macrostructure and microarchitecture continued to adapt across 44 weeks of military training in young women. Temporal decreases in cortical density support a role of intracortical remodeling in the pathogenesis of stress fracture. © 2021 Crown copyright. Journal of Bone and Mineral Research © 2021 American Society for Bone and Mineral Research (ASBMR). This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.


Assuntos
Militares , Tíbia , Absorciometria de Fóton , Adulto , Densidade Óssea , Osso e Ossos , Feminino , Humanos , Rádio (Anatomia) , Tíbia/diagnóstico por imagem , Adulto Jovem
14.
Curr Osteoporos Rep ; 19(3): 308-317, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33635518

RESUMO

PURPOSE OF REVIEW: Stress fractures at weight-bearing sites, particularly the tibia, are common in military recruits and athletes. This review presents recent findings from human imaging and biomechanics studies aimed at predicting and preventing stress fractures. RECENT FINDINGS: Peripheral quantitative computed tomography (pQCT) provides evidence that cortical bone geometry (tibial width and area) is associated with tibial stress fracture risk during weight-bearing exercise. The contribution of bone trabecular microarchitecture, cortical porosity, and bone material properties in the pathophysiology of stress fractures is less clear, but high-resolution pQCT and new techniques such as impact microindentation may improve our understanding of the role of microarchitecture and material properties in stress fracture prediction. Military studies demonstrate osteogenic outcomes from high impact, repetitive tibial loading during training. Kinetic and kinematic characteristics may influence stress fracture risk, but there is no evidence that interventions to modify biomechanics can reduce the incidence of stress fracture. Strategies to promote adaptive bone formation, in combination with improved techniques to assess bone strength, present exciting opportunities for future research to prevent stress fractures.


Assuntos
Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/prevenção & controle , Fraturas de Estresse/diagnóstico por imagem , Fraturas de Estresse/prevenção & controle , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/prevenção & controle , Tomografia Computadorizada por Raios X , Traumatismos em Atletas/fisiopatologia , Fenômenos Biomecânicos , Densidade Óssea/fisiologia , Fraturas de Estresse/fisiopatologia , Humanos , Extremidade Inferior , Fraturas da Tíbia/fisiopatologia , Suporte de Carga/fisiologia
15.
Med Sci Sports Exerc ; 53(7): 1505-1516, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481482

RESUMO

PURPOSE: This study aimed to determine the relationship between vitamin D status and upper respiratory tract infection (URTI) of physically active men and women across seasons (study 1) and then to investigate the effects on URTI and mucosal immunity of achieving vitamin D sufficiency (25(OH)D ≥50 nmol·L-1) by a unique comparison of safe, simulated sunlight or oral D3 supplementation in winter (study 2). METHODS: In study 1, 1644 military recruits were observed across basic military training. In study 2, a randomized controlled trial, 250 men undertaking military training received placebo, simulated sunlight (1.3× standard erythemal dose, three times per week for 4 wk and then once per week for 8 wk), or oral vitamin D3 (1000 IU·d-1 for 4 wk and then 400 IU·d-1 for 8 wk). URTI was diagnosed by a physician (study 1) and by using the Jackson common cold questionnaire (study 2). Serum 25(OH)D, salivary secretory immunoglobulin A (SIgA), and cathelicidin were assessed by liquid chromatography-mass spectrometry LC-MS/MS and enzyme-linked immunosorbent assay. RESULTS: In study 1, only 21% of recruits were vitamin D sufficient during winter. Vitamin D-sufficient recruits were 40% less likely to suffer URTI than recruits with 25(OH)D <50 nmol·L-1 (OR = 0.6, 95% confidence interval = 0.4-0.9), an association that remained after accounting for sex and smoking. Each URTI caused, on average, three missed training days. In study 2, vitamin D supplementation strategies were similarly effective to achieve vitamin D sufficiency in almost all (≥95%). Compared with placebo, vitamin D supplementation reduced the severity of peak URTI symptoms by 15% and days with URTI by 36% (P < 0.05). These reductions were similar with both vitamin D strategies (P > 0.05). Supplementation did not affect salivary secretory immunoglobulin A or cathelicidin. CONCLUSION: Vitamin D sufficiency reduced the URTI burden during military training.


Assuntos
Colecalciferol/administração & dosagem , Militares , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/terapia , Luz Solar , Administração Oral , Adolescente , Adulto , Método Duplo-Cego , Feminino , Humanos , Imunidade nas Mucosas , Masculino , Inquéritos e Questionários , Adulto Jovem
16.
Eur J Nutr ; 60(1): 475-491, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32390123

RESUMO

PURPOSE: To determine serum 25(OH)D and 1,25(OH)2D relationship with hepatitis B vaccination (study 1). Then, to investigate the effects on hepatitis B vaccination of achieving vitamin D sufficiency (serum 25(OH)D ≥ 50 nmol/L) by a unique comparison of simulated sunlight and oral vitamin D3 supplementation in wintertime (study 2). METHODS: Study 1 involved 447 adults. In study 2, 3 days after the initial hepatitis B vaccination, 119 men received either placebo, simulated sunlight (1.3 × standard-erythema dose, 3 × /week for 4 weeks and then 1 × /week for 8 weeks) or oral vitamin D3 (1000 IU/day for 4 weeks and 400 IU/day for 8 weeks). We measured hepatitis B vaccination efficacy as percentage of responders with anti-hepatitis B surface antigen immunoglobulin G ≥ 10 mIU/mL. RESULTS: In study 1, vaccine response was poorer in persons with low vitamin D status (25(OH)D ≤ 40 vs 41-71 nmol/L mean difference [95% confidence interval] - 15% [- 26, - 3%]; 1,25(OH)2D ≤ 120 vs ≥ 157 pmol/L - 12% [- 24%, - 1%]). Vaccine response was also poorer in winter than summer (- 18% [- 31%, - 3%]), when serum 25(OH)D and 1,25(OH)2D were at seasonal nadirs, and 81% of persons had serum 25(OH)D < 50 nmol/L. In study 2, vitamin D supplementation strategies were similarly effective in achieving vitamin D sufficiency from the winter vitamin D nadir in almost all (~ 95%); however, the supplementation beginning 3 days after the initial vaccination did not effect the vaccine response (vitamin D vs placebo 4% [- 21%, 14%]). CONCLUSION: Low vitamin D status at initial vaccination was associated with poorer hepatitis B vaccine response (study 1); however, vitamin D supplementation commencing 3 days after vaccination (study 2) did not influence the vaccination response. CLINICAL TRIAL REGISTRY NUMBER: Study 1 NCT02416895; https://clinicaltrials.gov/ct2/show/study/NCT02416895 ; Study 2 NCT03132103; https://clinicaltrials.gov/ct2/show/NCT03132103 .


Assuntos
Vacinas contra Hepatite B , Deficiência de Vitamina D , Adulto , Colecalciferol , Suplementos Nutricionais , Método Duplo-Cego , Humanos , Masculino , Estudos Prospectivos , Luz Solar , Vitamina D , Deficiência de Vitamina D/prevenção & controle
17.
Med Sci Sports Exerc ; 53(4): 860-868, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017351

RESUMO

INTRODUCTION: Low energy availability (EA) may impede adaptation to exercise, suppressing reproductive function and bone turnover. Exercise energy expenditure (EEE) measurements lack definition and consistency. This study aimed to compare EA measured from moderate and vigorous physical activity from accelerometry (EEEmpva) with EA from total physical activity (EEEtpa) from doubly labeled water in women. The secondary aim was to determine the relationship of EA with physical fitness, body composition by dual-energy x-ray absorptiometry, heart rate variability (HRV), and eating behavior (Brief Eating Disorder in Athletes Questionnaire [BEDA-Q]). METHODS: This was a prospective, repeated-measures study, assessing EA measures and training adaptation during 11-month basic military training. Forty-seven women (23.9 ± 2.6 yr) completed three consecutive 10-d assessments of EEEmvpa, EEEtpa, and energy intake (EI). EA measures were compared using linear regression and Bland-Altman analyses; relationships of EA with fat mass, HRV, 1.5-mile run times, and BEDA-Q were evaluated using partial correlations. RESULTS: EA from EEEmvpa demonstrated strong agreement with EA from EEEtpa across the measurement range (R2 = 0.76, r = 0.87, P < 0.001) and was higher by 10 kcal·kg-1 FFM·d-1. However, EA was low in absolute terms because of underreported EI. Higher EA was associated with improved 1.5-mile run time (r = 0.28, P < 0.001), fat mass loss (r = 0.38, P < 0.001), and lower BEDA-Q score (r = -0.37, P < 0.001) but not HRV (all P > 0.10). CONCLUSION: Accelerometry-based EEE demonstrated validity against doubly labeled water during multistressor training, the difference representing 10 kcal·kg-1 FFM·d-1 EEE from nonexercise activity. Beneficial physical but not autonomic adaptations were associated with higher EA. EAmvpa and BEDA-Q warrant consideration for low EA assessment and screening.


Assuntos
Adaptação Fisiológica , Metabolismo Energético/fisiologia , Condicionamento Físico Humano/fisiologia , Resistência Física/fisiologia , Absorciometria de Fóton , Acelerometria , Composição Corporal , Remodelação Óssea/fisiologia , Ingestão de Energia , Comportamento Alimentar , Feminino , Humanos , Modelos Lineares , Militares , Aptidão Física/fisiologia , Estudos Prospectivos , Adulto Jovem
18.
Med Sci Sports Exerc ; 53(2): 394-403, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32701874

RESUMO

PURPOSE: This study aimed to investigate the effect of supplementary energy on bone formation and resorption during arduous military training in energy deficit. METHODS: Thirty male soldiers completed an 8-wk military combat course (mean ± SD, age = 25 ± 3 yr, height = 1.78 ± 0.05 m, body mass = 80.9 ± 7.7 kg). Participants received either the habitual diet (control group, n = 15) or an additional 5.1 MJ·d-1 to eliminate the energy deficit (supplemented group, n = 15). Circulating markers of bone formation and resorption, and reproductive, thyroid, and metabolic status, were measured at baseline and weeks 6 and 8 of training. RESULTS: Bone-specific alkaline phosphatase decreased in controls (-4.4 ± 1.9 µg·L-1) and increased in the supplemented group (16.0 ± 6.6 µg·L-1), between baseline and week 8 (P < 0.001). Procollagen type 1 N-terminal propeptide increased between baseline and week 6 for both groups (5.6 ± 8.1 µg·L-1, P = 0.005). Beta carboxy-terminal cross-linking telopeptide of type 1 collagen decreased between baseline and week 8 for both groups (-0.16 ± 0.20 µg·L-1, P < 0.001). Prolactin increased from baseline to week 8 for the supplemented group (148 ± 151 IU·L-1, P = 0.041). The increase in adiponectin from baseline to week 8 was higher in controls (4.3 ± 1.8 mg·L-1, P < 0.001) than that in the supplemented group (1.4 ± 1.0 mg·L-1, P < 0.001). Insulin-like growth factor binding protein-3 was lower at week 8 than baseline for controls (-461 ± 395 ng·mL-1, P < 0.001). CONCLUSION: The increase in bone-specific alkaline phosphatase, a marker of bone formation, with supplementation supports a role of energy in osteoblastic activity; the implications for skeletal adaptation and stress fracture risk are unclear. The mechanism is likely through protecting markers of metabolic, but not reproductive or thyroid, function.


Assuntos
Reabsorção Óssea/fisiopatologia , Militares , Osteogênese/fisiologia , Condicionamento Físico Humano/fisiologia , Adiponectina/sangue , Adulto , Fosfatase Alcalina/sangue , Colágeno Tipo I/sangue , Dieta , Metabolismo Energético , Hormônios Gonadais/sangue , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Masculino , Prolactina/sangue , Hormônios Tireóideos/sangue , Adulto Jovem
19.
Adv Nutr ; 12(3): 887-896, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33079983

RESUMO

Protein turnover reflects the continual synthesis and breakdown of body proteins, and can be measured at a whole-body (i.e. aggregated across all body proteins) or tissue (e.g. skeletal muscle only) level using stable isotope methods. Evaluating protein turnover in free-living environments, such as military training, can help inform protein requirements. We undertook a narrative review of published literature with the aim of reviewing the suitability of, and advancements in, stable isotope methods for measuring protein turnover in field research. The 2 primary approaches for measuring protein turnover are based on precursor- and end-product methods. The precursor method is the gold-standard for measuring acute (over several hours) skeletal muscle protein turnover, whereas the end-product method measures chronic (over several weeks) skeletal muscle protein turnover and provides the opportunity to monitor free-living activities. Both methods require invasive procedures such as the infusion of amino acid tracers and muscle biopsies to assess the uptake of the tracer into tissue. However, the end-product method can also be used to measure acute (over 9-24 h) whole-body protein turnover noninvasively by ingesting 15N-glycine, or equivalent isotope tracers, and collecting urine samples. The end-product method using 15N-glycine is a practical method for measuring whole-body protein turnover in the field over short (24 h) time frames and has been used effectively in recent military field research. Application of this method may improve our understanding of protein kinetics during conditions of high physiological stress in free-living environments such as military training.


Assuntos
Militares , Glicina , Humanos , Músculo Esquelético , Isótopos de Nitrogênio , Proteínas
20.
Front Nutr ; 7: 142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984399

RESUMO

Military personnel experience energy deficit (total energy expenditure higher than energy intake), particularly during combat training and field exercises where exercising energy expenditures are high and energy intake is reduced. Low energy availability (energy intake minus exercising energy expenditure expressed relative to fat free mass) impairs endocrine function and bone health, as recognized in female athletes as the Female Athlete Triad syndrome. More recently, the Relative Energy Deficiency in Sport (RED-S) syndrome encompasses broader health outcomes, physical and cognitive performance, non-athletes, and men. This review summarizes the evidence for the effect of low energy availability and energy deficiency in military training and operations on health and performance outcomes. Energy availability is difficult to measure in free-living individuals but doubly labeled water studies demonstrate high total energy expenditures during military training; studies that have concurrently measured energy intake, or measured body composition changes with DXA, suggest severe and/or prolonged energy deficits. Military training in energy deficit disturbs endocrine and metabolic function, menstrual function, bone health, immune function, gastrointestinal health, iron status, mood, and physical and cognitive performance. There are more data for men than women, and little evidence on the chronic effects of repeated exposures to energy deficit. Military training impairs indices of health and performance, indicative of the Triad and RED-S, but the multi-stressor environment makes it difficult to isolate the independent effects of energy deficiency. Studies supplementing with energy to attenuate the energy deficit suggest an independent effect of energy deficiency in the disturbances to metabolic, endocrine and immune function, and physical performance, but randomized controlled trials are lacking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...