Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Immunother Cancer ; 8(1)2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32581053

RESUMO

BACKGROUND: Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The tumor microenvironment content, particularly the presence of macrophages, was described as crucial for the development of the disease. This work aimed at studying the involvement of the M-CSF (CSF-1)/IL-34/CSF-1R pathway in the formation of macrophages in MPM, using samples from patients. METHODS: Pleural effusions (PEs), frozen tumors, primary MPM cells and MPM cell lines used in this study belong to biocollections associated with clinical databases. Cytokine expressions were studied using real-time PCR and ELISA. The Cancer Genome Atlas database was used to confirm our results on an independent cohort. An original three-dimensional (3D) coculture model including MPM cells, monocytes from healthy donors and a tumor antigen-specific cytotoxic CD8 T cell clone was used. RESULTS: We observed that high interleukin (IL)-34 levels in PE were significantly associated with a shorter survival of patients. In tumors, expression of CSF1 was correlated with 'M2-like macrophages' markers, whereas this was not the case with IL34 expression, suggesting two distinct modes of action of these cytokines. Expression of IL34 was higher in MPM cells compared with primary mesothelial cells. Particularly, high expression of IL34 was observed in MPM cells with an alteration of CDKN2A. Finally, using 3D coculture model, we demonstrated the direct involvement of MPM cells in the formation of immunosuppressive macrophages, through activation of the colony stimulating factor-1 receptor (CSF1-R) pathway, causing the inhibition of cytotoxicity of tumor antigen-specific CD8+ T cells. CONCLUSIONS: The M-CSF/IL-34/CSF-1R pathway seems strongly implicated in MPM and could constitute a therapeutic target to act on immunosuppression and to support immunotherapeutic strategies.

3.
J Thorac Oncol ; 15(5): 827-842, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31945495

RESUMO

INTRODUCTION: Oncolytic immunotherapy is based on the use of nonpathogenic replicative oncolytic viruses that infect and kill tumor cells exclusively. Recently, we found that the spontaneous oncolytic activity of the Schwarz strain of measles virus (MV) against human malignant pleural mesothelioma (MPM) depends on defects in the antiviral type I interferon (IFN-I) response in tumor cells. METHODS: In this study, we studied three independent human MPM bio-collections to identify the defects in the IFN-I responses in tumor cells. RESULTS: We show that the most frequent defect is the homozygous deletions (HDs) of all the 14 IFN-I genes (IFN-α and IFN-ß) that we found in more than half of MV-sensitive MPM cell lines. These HDs occur together with the HDs of the tumor suppressor gene CDKN2A also located in the 9p21.3 chromosome region. Therefore, the IFN-I-/- MPM cell lines develop a partial and weak IFN-I response when they are exposed to the virus compared with that of normal cells and MV-resistant MPM cell lines. This response consists of the expression of a restricted number of IFN-stimulated genes that do not depend on the presence of IFN-I. In addition, the IFN-I-/- MPM cell lines infected by MV also develop a pro-inflammatory response associated with stress of the endoplasmic reticulum. CONCLUSION: Our study emphasizes the link between HDs of IFN-I encoding genes and the CDKN2A gene in MPM and sensitivity to MV oncolytic immunotherapy.

4.
Cancer Lett ; 472: 29-39, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838086

RESUMO

Toll-like receptor 3 (TLR3) is an immune receptor that behaves like a death receptor in tumor cells, thereby providing an original target for cancer therapy. The therapeutic potential of TLR3 targeting in malignant mesothelioma, an aggressive and incurable neoplasia of the pleura and peritoneum, has so far not been addressed. We investigated TLR3 expression and sensitivity of human mesothelioma cell lines to the synthetic dsRNA Poly(I:C), alone or in combination with cisplatin, the gold standard chemotherapy in mesothelioma. Activation of TLR3 by Poly(I:C) induced apoptosis of 4/8 TLR3-positive cell lines but not of TLR3-negative cell lines. The combined cisplatin/Poly(I:C) treatment enhanced apoptosis of 3/4 Poly(I:C)-sensitive cell lines and overcame resistance to Poly(I:C) or cisplatin alone in 2/4 cell lines. Efficacy of the combined treatment relied on cisplatin-induced downregulation of c-FLIP, the main regulator of the extrinsic apoptotic pathway, leading to an enhanced caspase-8-mediated pathway. Of note, 6/6 primary cell samples isolated from patients with peritoneal mesothelioma expressed TLR3. Patient-derived cells were sensitive to Poly(I:C) alone while the combined cisplatin/Poly(I:C) treatment induced dramatic cell death. Our findings demonstrate that TLR3 targeting in combination with cisplatin presents an innovative therapeutic strategy in mesothelioma.

5.
Methods Mol Biol ; 2058: 127-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486035

RESUMO

Oncolytic immunotherapy efficacy relies partially on the induction of immunogenic tumor cell death following infection with oncolytic viruses (OV) to induce an antitumor immune response. Here, we describe a method to determine if an OV is able to induce such an immunogenic tumor cell death. This method consists in testing whether tumor cells lysed by an OV are able to induce the maturation of human monocyte-derived immature dendritic cells (Mo-iDC).

6.
ACS Appl Mater Interfaces ; 11(36): 32808-32814, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31424916

RESUMO

The development of fluorescent organic nanoparticles, serving as bioimaging agents or drug cargos, represents a buoyant field of investigations. Nevertheless, their ulterior fate and structural integrity after cell uptake remain elusive. Toward this aim, we have elaborated original photoactive organic nanoparticles (dTEM ∼ 35-50 nm wide) with an off-on signal upon cellular internalization. Such nanoparticles are based on the noncovalent association of red-emitting benzothiadiazole (BDZ) derivatives and azo dyes, acting as fluorescence quenchers. Upon varying the azo/BDZ ratio, we found that quantitative emission quenching could be obtained with only a 0.2:1 azo/BDZ ratio and originated from exergonic oxidative and reductive photoinduced electron transfer from the azo units (ΔelG0 = -0.21 and -0.29 eV, respectively). Such results revisited the origin of emission quenching, often confusedly ascribed to Förster resonance energy transfer. A nonlinear and sharp drop of the emission intensity with the increase in the azo unit density n was observed and presents comparable evolution to a n-1/3 mathematical law. Thorough biological examinations involving cancer cells prove a receptor-independent endocytosis pathway, leading to progressive cell lighting upon nanoparticle accumulation in the late endosomal/lysosomal compartments. Complete emission recovery of the initially quenched azo/BDZ nanosystems could be achieved by using mefloquine, which caused endosomal/lysosomal disruption, and release of their content in the cytoplasm. Such results demonstrate that the dotlike emission from endosomes actually stems from fully dissociated individual dyes and not integer nanoparticles. They conclude on the high spatial confinement promoted by organelles and finally question its severe impact on functional compounds or nanoparticles whose properties are strongly distance dependent.


Assuntos
Compostos Azo/química , Endocitose , Corantes Fluorescentes/química , Sondas Moleculares/química , Nanopartículas/química , Compostos Orgânicos/química , Linhagem Celular Tumoral , Elétrons , Endossomos/metabolismo , Humanos , Tiadiazóis/química
7.
Exp Hematol ; 70: 97-108, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30593830

RESUMO

Cell surface molecules aberrantly expressed or overexpressed by myeloid leukemic cells represent potential disease-specific therapeutic targets for antibodies. MUC1 is a polymorphic glycoprotein, the cleavage of which yields two unequal chains: a large extracellular α subunit containing a tandem repeat array bound in a strong noncovalent interaction to a smaller ß subunit containing the transmembrane and cytoplasmic domains. Because the α-chain can be released from the cell-bound domains of MUC1, agents directed against the α-chain will not effectively target MUC1+ cells. The MUC1 SEA (a highly conserved protein module so called from its initial identification in a sea urchin sperm protein, in enterokinase, and in agrin) domain formed by the binding of the α and ß chains  represents a stable structure fixed to the cell surface at all times. DMB-5F3, a partially humanized murine anti-MUC1 SEA domain monoclonal antibody, was used to examine MUC1 expression in acute myeloid leukemia (AML) and was found to bind acute myelomonocytic and monocytic leukemia (AML-M4 and AML-M5) cell lines. We also examined monocytic neoplasms freshly obtained from patients including chronic myelomonocytic leukemia and juvenile myelomonocytic leukemia, which were found to uniformly express MUC1. CD34+/lin-/CD38- or CD38+ presumed leukemic stem cell populations from CD34+ AML and CD34-CD38- or CD38+ populations from CD34- AML were also found to express MUC1, although at low percentages. Based on these studies, we generated an anti-MUC1 immunotoxin to directly gauge the cytotoxic efficacy of targeting AML-bound MUC1. Using single-chain DMB-5F3 fused to recombinant gelonin toxin, the degree of AML cytotoxicity was found to correlate with MUC1 expression. Our data support the use of an anti-MUC1 SEA module-drug conjugates to selectively target and inhibit MUC1-expressing myelomonocytic leukemic cells.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Sistemas de Liberação de Medicamentos , Imunotoxinas/farmacologia , Leucemia Mielomonocítica Crônica , Leucemia Mielomonocítica Juvenil , Mucina-1/imunologia , Proteínas de Neoplasias/imunologia , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Anticorpos de Cadeia Única/farmacologia , Animais , Feminino , Humanos , Células K562 , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/imunologia , Leucemia Mielomonocítica Crônica/patologia , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/imunologia , Leucemia Mielomonocítica Juvenil/patologia , Masculino , Camundongos , Mucina-1/genética , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas
8.
Blood Adv ; 2(23): 3492-3505, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30530776

RESUMO

In this study, we assessed the sensitivity of myeloma cells to the oncolytic measles virus (MV) in relation to p53 using 37 cell lines and 23 primary samples. We showed that infection and cell death were correlated with CD46 expression, which was associated with TP53 status; TP53 abn cell lines highly expressed CD46 and were preferentially infected by MV when compared with the TP53 wt cell lines (P = .046 and P = .045, respectively). Infection of myeloma cells was fully dependent on CD46 expression in both cell lines and primary cells. In the TP53 wt cell lines, but not the TP53 abn cell lines, activation of the p53 pathway with nutlin3a inhibited both CD46 expression and MV infection, while TP53 silencing reciprocally increased CD46 expression and MV infection. We showed using a p53 chromatin immunoprecipitation assay and microRNA assessment that CD46 gene expression was directly and indirectly regulated by p53. Primary myeloma cells overexpressed CD46 as compared with normal cells and were highly infected and killed by MV. CD46 expression and MV infection were inhibited by nutlin3a in primary p53-competent myeloma cells, but not in p53-deficient myeloma cells, and the latter were highly sensitive to MV infection. In summary, myeloma cells were highly sensitive to MV and infection inhibition by the p53 pathway was abrogated in p53-deficient myeloma cells. These results argue for an MV-based clinical trial for patients with p53 deficiency.


Assuntos
Vírus do Sarampo/fisiologia , Proteína Cofatora de Membrana/metabolismo , Mieloma Múltiplo/patologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Proteína Cofatora de Membrana/antagonistas & inibidores , Proteína Cofatora de Membrana/genética , MicroRNAs/metabolismo , Mieloma Múltiplo/metabolismo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/química , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
9.
Mol Cancer ; 17(1): 148, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30309369

RESUMO

Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer related to asbestos exposure. The discovery of soluble biomarkers with diagnostic/prognostic and/or therapeutic properties would improve therapeutic care of MPM patients. Currently, soluble biomarkers described present weaknesses preventing their use in clinic. This study aimed at evaluating brain-derived neurotrophic factor (BDNF), we previously identified using transcriptomic approach, in MPM. We observed that high BDNF expression, at the mRNA level in tumors or at the protein level in pleural effusions (PE), was a specific hallmark of MPM samples. This protein presented significant but limited diagnostic properties (area under the curve (AUC) = 0.6972, p < 0.0001). Interestingly, high BDNF gene expression and PE concentration were predictive of shorter MPM patient survival (13.0 vs 8.3 months, p < 0.0001, in PE). Finally, BDNF did not affect MPM cell oncogenic properties but was implicated in PE-induced angiogenesis. In conclusion, BDNF appears to be a new interesting biomarker for MPM and could also be a new therapeutic target regarding its implication in angiogenesis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Mesotelioma/sangue , Mesotelioma/patologia , Neovascularização Patológica/sangue , Neoplasias Pleurais/sangue , Neoplasias Pleurais/patologia , Biomarcadores Tumorais , Fator Neurotrófico Derivado do Encéfalo/genética , Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Mesotelioma/genética , Mesotelioma/mortalidade , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/mortalidade , Prognóstico , RNA Mensageiro/genética , Curva ROC
10.
Clin Epigenetics ; 10: 79, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29946373

RESUMO

Background: Malignant pleural mesothelioma (MPM) is a very rare and highly aggressive cancer of the pleura associated in most cases with asbestos exposure. To date, no really efficient treatments are available for this pathology. Recently, it has been shown that epigenetic drugs, particularly DNA methylation or histone acetylation modulating agents, could be very efficient in terms of cytotoxicity for several types of cancer cells. We previously showed that a hypomethylating agent (decitabine) and a histone deacetylase inhibitor (HDACi) (valproic acid (VPA)) combination was immunogenic and led to the induction of an anti-tumor immune response in a mice model of mesothelioma. However, VPA is not very specific, is active at millimolar concentrations and is responsible for side effects in clinic. To improve this approach, we studied four newly synthetized HDACi, two hydroxamates (ODH and NODH) and two benzamides (ODB and NODB), in comparison with VPA and SAHA. We evaluated their toxicity on immune cells and their immunogenicity on MPM cells in combination with decitabine. Results: All the tested HDACi were toxic for immune cells at high concentrations. Combination with decitabine increased toxicity of HDACi only towards T-cell clone. A decrease in the proportion of regulatory T cells and natural killer cells was observed in particular with VPA and ODH. In MPM cells, all HDACi combinations induced NY-ESO-1 cancer testis antigen (CTA) expression and the recognition of the treated cells by a NY-ESO-1 specific T-CD8 clone. However, for MAGE-A1, MAGE-A3 and XAGE-1b mRNA expression, the results obtained depended on the HDACi used and on the CTA studied. Depending on the MPM cell line studied, molecules alone increased moderately PD-L1 expression. When combined, a higher stimulation of this immune check point inhibitor expression was observed. Decitabine-induced anti-viral response seemed to be inhibited in the presence of HDACi. Conclusions: This work shows that the combination of decitabine and HDACi could be of interest for MPM immunotherapy. However, this combination induced PD-L1 expression which suggests that an association with anti-PD-L1 therapy should be performed to induce an efficient anti-tumor immune response.


Assuntos
Antígeno B7-H1/genética , Decitabina/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Pulmonares/genética , Mesotelioma/genética , Ácido Valproico/farmacologia , Vorinostat/farmacologia , Antígeno B7-H1/metabolismo , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina/uso terapêutico , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Imunoterapia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Masculino , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Ácido Valproico/uso terapêutico , Vorinostat/uso terapêutico
11.
Oncotarget ; 9(23): 16311-16329, 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29662647

RESUMO

Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses of four original models of rat SM revealed their increasing infiltrative and metastatic potential were associated with differences in Ki67 index, blood-vessel density, and T-lymphocyte and macrophage infiltration. In comparison with the noninvasive tumor M5-T2, proteomic analysis demonstrated the three invasive tumors F4-T2, F5-T1 and M5-T1 shared in common a very significant increase in the abundance of the multifunctional proteins galectin-3, prohibitin and annexin A5, and a decrease in proteins involved in cell adhesion, tumor suppression, or epithelial differentiation. The increased metastatic potential of the F5-T1 tumor, relative to F4-T2, was associated with an increased macrophage vs T-cell infiltrate, changes in the levels of expression of a panel of cytokine genes, an increased content of proteins involved in chromatin organization, ribosome structure, splicing, or presenting anti-adhesive properties, and a decreased content of proteins involved in protection against oxidative stress, normoxia and intracellular trafficking. The most invasive tumor, M5-T1, was characterized by a pattern of specific phenotypic and molecular features affecting the presentation of MHC class I-mediated antigens and immune cell infiltration, or involved in the reorganization of the cytoskeleton and composition of the extracellular matrix. These four preclinical models and data represent a new resource available to the cancer research community to catalyze further investigations on invasiveness.

12.
Oncoimmunology ; 7(3): e1407897, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29399408

RESUMO

Oncolytic immunotherapy using oncolytic viruses (OV) has been shown to stimulate the antitumor immune response by inducing the release of tumor-associated antigens (TAA) and danger signals from the dying infected tumor cells. In this study, we sought to determine if the lysis of tumor cells induced by different OV: measles virus, vaccinia virus, vesicular stomatitis virus, herpes simplex type I virus, adenovirus or enterovirus, has consequences on the capacity of tumor cells to present TAA, such as NY-ESO-1. We show that the co-culture of NY-ESO-1neg/HLA-DP4pos melanoma cells with NY-ESO-1pos/HLA-DP4neg melanoma cells infected and killed by different OV induces an intercellular transfer of NY-ESO-1 that allows the recognition of NY-ESO-1neg/HLA-DP4pos tumor cells by an HLA-DP4/NY-ESO-1(157-170)-specific CD4+ cytotoxic T cell clone, NY67. We then confirmed this result in a second model with an HLA-DP4+ melanoma cell line that expresses a low amount of NY-ESO-1. Recognition of this cell line by the NY67 clone is largely increased in the presence of OV productive infection. Altogether, our results show for the first time another mechanism of stimulation of the anti-tumor immune response by OV, via the loading of tumor cells with TAA that sensitizes them for direct recognition by specific effector CD4+ T cells, supporting the use of OV for cancer immunotherapy.

13.
Oncotarget ; 8(34): 57552-57573, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28915695

RESUMO

A rat model of sarcomatoid mesothelioma, mimicking some of the worst clinical conditions encountered, was established to evaluate the therapeutic potential of intracavitary curcumin administration. The M5-T1 cell line, selected from a collection established from F344 rats induced with asbestos, produces tumors within three weeks, with extended metastasis in normal tissues, after intraperitoneal inoculation in syngeneic rats. The optimal concentration/time conditions for killing M5-T1 cells with curcumin were first determined in vitro. Secondly, the potential of intraperitoneal curcumin administration to kill tumor cells in vivo was evaluated in tumor-bearing rats, in comparison with a reference epigenetic drug, SAHA. Both agents administered at days 21 and 26 after tumor challenge produced necrosis within the solid tumors at day 28. However, tumor tissue necrosis induced with curcumin was much more extensive than with SAHA, and was characterized by infiltration with mononuclear phagocytic cells. In contrast, tumor tissue treated with SAHA contained foci of resistant cells and was infiltrated by many isolated CD8+ cells. The treatment of tumor-bearing rats with 1.5 mg/kg curcumin on days 7, 9, 11 and 14 after tumor challenge dramatically reduced the mean total tumor mass at day 16. Clusters of CD8+ T lymphocytes were observed at the periphery of small residual tumor masses in the peritoneal cavity, which presented a significant reduction in mitotic index, IL6 and vimentin expression compared with tumors in untreated rats. These data open up interesting new prospects for the therapy of sarcomatoid mesothelioma with curcumin and its derivatives.

15.
Oncoimmunology ; 6(1): e1261240, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197384

RESUMO

Attenuated measles virus (MV) is currently being evaluated in clinical trials as an oncolytic therapeutic agent. Originally used for its lytic activity against tumor cells, it is now admitted that the effectiveness of MV also lies in its ability to initiate antitumor immune responses through the activation of dendritic cells (DCs). In this study, we investigated the capacity of oncolytic MV to convert human blood myeloid CD1c+ DCs and plasmacytoid DCs (pDCs) into cytotoxic effectors. We found that MV induces the expression of the cytotoxic protein TNF-related apoptosis-inducing ligand (TRAIL) on the surface of DCs. We demonstrate that the secretion of interferon-α (IFN-α) by DCs in response to MV is responsible for this TRAIL expression. Several types of PRRs (pattern recognition receptors) have been implicated in MV genome recognition, including RLRs (RIG-I-like receptors) and TLRs (Toll-like receptors). We showed that CD1c+ DCs secrete modest amounts of IFN-α and express TRAIL in an RLR-dependent manner upon exposure to MV. In pDCs, MV is recognized by RLRs and also by TLR7, leading to the secretion of high amounts of IFN-α and TRAIL expression. Finally, we showed that MV-stimulated DCs induce TRAIL-mediated cell death of Jurkat cells, confirming their acquisition of cytotoxic functions. Our results demonstrate that MV can activate cytotoxic myeloid CD1c+ DCs and pDCs, which may participate to the antitumor immune response.

16.
Curr Gene Ther ; 16(6): 419-428, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28042780

RESUMO

BACKGROUND: Oncolytic viruses such as live-attenuated, vaccine strains of measles virus (MV) have recently emerged as promising cancer treatments, having shown significant antitumor activity against a large variety of human tumors. OBJECTIVE: Our study aims at determining which parameters define the sensitivity of human melanoma cells to oncolytic MV infection. METHODS: We analyzed both in vitro and in vivo the oncolytic activity of MV against a panel of human melanoma cell established in our laboratory. We tested whether either type I interferons or the interferon pathway inhibitor Ruxolitinib could modulate the sensitivity of these cells to oncolytic MV infection. RESULTS: Human melanoma cells exhibit varying levels of sensitivity to MV infection in culture and as tumor xenografts. As these differences are not explained by their expression level of the CD46 receptor, we hypothesized that antiviral immune responses may be suppressed in certain cell resulting in their inability to control infection efficiently. By analyzing the type I IFN response, we found that resistant cells had a fully functional pathway that was activated upon MV infection. On the contrary, sensitive cell showed defects in this pathway. When pre-treated with IFN-α and IFN-ß, all but one of the sensitive cell became resistant to MV. Cells resistant to MV were rendered sensitive to MV with Ruxolitinib. CONCLUSION: Type I interferon response is the main determinant for the sensitivity or resistance of melanoma to oncolytic MV infection. This will have to be taken into account for future clinical trials on oncolytic MV.


Assuntos
Interferon Tipo I/uso terapêutico , Vírus do Sarampo/genética , Melanoma/terapia , Terapia Viral Oncolítica , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Interferon Tipo I/genética , Melanoma/genética , Melanoma/virologia , Proteína Cofatora de Membrana/genética , Camundongos , Vírus Oncolíticos/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncoimmunology ; 5(7): e1178025, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622030

RESUMO

Tumor-associated macrophages (TAM) are immunosuppressive cells that can massively accumulate in the tumor microenvironment. In patients with ovarian cancer, their density is correlated with poor prognosis. Targeting mediators that control the generation or the differentiation of immunoregulatory macrophages represents a therapeutic challenge to overcome tumor-associated immunosuppression. The ectonucleotidase CD39 hydrolyzes ATP into extracellular adenosine that exhibits potent immunosuppressive properties when signaling through the A2A adenosine receptor. We report here that CD14(+) CD163(+) TAM isolated from ovarian cancer patients and macrophages generated in vitro with M-CSF, express high levels of the membrane ectonucleotidase CD39 compared to classically activated macrophages. The CD39 inhibitor POM-1 and adenosine deaminase (ADA) diminished some of the immunosuppressive functions of CD14(high) CD163(high) CD39(high) macrophages, such as IL-10 secretion. We identified the cytokine IL-27, secreted by tumor-infiltrating neutrophils, located close to infiltrating CD163(+) macrophages, as a major rheostat of CD39 expression and consequently, on the acquisition of immunoregulatory properties by macrophages. Accordingly, the depletion of IL-27 downregulated CD39 and PD-L1 expression as well as IL-10 secretion by M-CSF-macrophages. Collectively, these data suggest that CD39, drived by IL-27 and CD115 ligands in ovarian cancer, maintains the immunosuppressive phenotype of TAM. This work brings new information on the acquisition of immunosuppressive properties by tumor-infiltrating macrophages.

18.
J Thorac Oncol ; 11(10): 1765-73, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27418105

RESUMO

INTRODUCTION: Mesothelioma is a rare and aggressive cancer related to asbestos exposure. We recently showed that pleural effusions (PEs) from patients with mesothelioma contain high levels of the C-C motif chemokine ligand 2 (CCL2) inflammatory chemokine. In the present work, we studied the effect of CCL2 contained in mesothelioma samples, particularly on monocyte recruitment. Then, we studied the fate of these monocytes in malignant pleural mesothelioma (MPM) PEs and their impact on tumor cells' properties. METHODS: The implication of CCL2 in monocyte recruitment was evaluated using transmigration assays and a CCL2 blocking antibody. The phenotype of macrophages was determined by flow cytometry and enzyme-linked immunosorbent assay. Immunohistochemical analysis was used to support the results. Cocultures of macrophages with mesothelioma cells were performed to study cancer cell proliferation and resistance to treatment. RESULTS: We showed that CCL2 is a major factor of monocyte recruitment induced by MPM samples. Macrophages obtained in MPM samples were M2 macrophages (high CD14, high CD163, and interleukin-10 secretion after activation). The colony-stimulating factor 1 receptor/macrophage colony-stimulating factor (M-CSF) pathway is implicated in M2 polarization, and high levels of M-CSF were measured in MPM samples compared with benign PE (4.17 ± 2.75 ng/mL and 1.94 ± 1.47 ng/mL, respectively). Immunohistochemical analysis confirmed the presence of M2 macrophages in pleural and peritoneal mesothelioma. Finally, we showed that M2 macrophages increased mesothelioma cell proliferation and resistance to treatment. CONCLUSIONS: These results demonstrate the implication of CCL2 in MPM pathogenesis and designate M-CSF as a new potential biomarker of MPM. This study also identifies CCL2 and colony-stimulating factor 1 receptor/M-CSF as interesting new targets to modulate pro-tumorigenic properties of the tumor microenvironment.


Assuntos
Neoplasias Pulmonares/complicações , Macrófagos/metabolismo , Mesotelioma/complicações , Monócitos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/patologia , Masculino , Mesotelioma/patologia
19.
Theranostics ; 6(6): 795-807, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27162550

RESUMO

Fast clearance, metabolism and systemic toxicity are major limits for the clinical use of anti-cancer drugs. Histone deacetylase inhibitors (HDACi) present these defects despite displaying promising anti-tumor properties on tumor cells in vitro and in in vivo model of cancers. Specific delivery of anti-cancer drugs into the tumor should improve their clinical benefit by limiting systemic toxicity and by increasing the anti-tumor effect. In this work, we describe a simple and flexible polymeric nanoparticle platform highly targeting the tumor in vivo and triggering impressive tumor weight reduction when functionalized with HDACi. Our nanoparticles were produced by Ring-Opening Metathesis Polymerization of azido-polyethylene oxide-norbornene macromonomers and functionalized using click chemistry. Using an orthotopic model of peritoneal invasive cancer, a highly selective accumulation of the particles in the tumor was obtained. A combination of epigenetic drugs involving a pH-responsive histone deacetylase inhibitor (HDACi) polymer conjugated to these particles gave 80% reduction of tumor weight without toxicity whereas the free HDACi has no effect. Our work demonstrates that the use of a nanovector with theranostic properties leads to an optimized delivery of potent HDACi in tumor and then, to an improvement of their anti-tumor properties in vivo.


Assuntos
Portadores de Fármacos/farmacocinética , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacocinética , Nanopartículas/administração & dosagem , Neoplasias Peritoneais/tratamento farmacológico , Animais , Modelos Animais de Doenças , Mesotelioma/tratamento farmacológico , Camundongos Endogâmicos C57BL , Resultado do Tratamento
20.
Oncotarget ; 7(23): 34664-87, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129173

RESUMO

Malignant mesothelioma (MM) is one of the worst cancers in terms of clinical outcome, urging the need to establish and characterize new preclinical tools for investigation of the tumorigenic process, improvement of early diagnosis and evaluation of new therapeutic strategies. For these purposes, we characterized a collection of 27 cell lines established from F344 rats, after 136 to 415 days of induction with crocidolite asbestos administered intraperitoneally. Four mesotheliomas were distinguished from 23 preneoplastic mesothelial cell lines (PN) according to their propensity to generate tumors after orthotopic transplantation into syngeneic rats, their growth pattern, and the expression profile of three genes. PN cell lines were further discriminated into groups / subgroups according to morphology in culture and the expression profiles of 14 additional genes. This approach was completed by analysis of positive and negative immunohistochemical MM markers in the four tumors, of karyotype alterations in the most aggressive MM cell line in comparison with a PN epithelioid cell line, and of human normal mesothelial and mesothelioma cells and a tissue array. Our results showed that both the rat and human MM cell lines shared in common a dramatic decrease in the relative expression of Cdkn2a and of epigenetic regulators, in comparison with PN and normal human mesothelial cells, respectively. In particular, we identified the involvement of the relative expression of the Ten-Eleven Translocation (TET) family of dioxygenases and Dnmt3a in relation to the 5-hydroxymethylcytosine level in malignant transformation and the acquisition of metastatic potential.


Assuntos
5-Metilcitosina/análogos & derivados , Transformação Celular Neoplásica/patologia , Inibidor de Quinase Dependente de Ciclina p18/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Oxigenases de Função Mista/metabolismo , Lesões Pré-Cancerosas/patologia , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Asbesto Crocidolita/toxicidade , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina , Células Epiteliais/patologia , Epitélio/patologia , Humanos , Cariótipo , Neoplasias Pulmonares/induzido quimicamente , Mesotelioma/induzido quimicamente , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA