Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 8(1): e2300833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806773

RESUMO

Solid-state sodium ion conductors are crucial for the next generation of all-solid-state sodium batteries with high capacity, low cost, and improved safety. Sodium closo-carbadodecaborate (NaCB11 H12 ) is an attractive Na-ion conductor owing to its high thermal, electrochemical, and interfacial stability. Mechanical milling has recently been shown to increase conductivity by five orders of magnitude at room temperature, making it appealing for application in all-solid-state sodium batteries. Intriguingly, milling longer than 2 h led to a significant decrease in conductivity. In this study, X-ray Raman scattering (XRS) spectroscopy is used to probe the origin of the anomalous impact of mechanical treatment on the ionic conductivity of NaCB11 H12 . The B, C, and Na K-edge XRS spectra are successfully measured for the first time, and ab initio calculations are employed to interpret the results. The experimental and computational results reveal that the decrease in ionic conductivity upon prolonged milling is due to the increased proximity of Na to the CB11 H12 cage, caused by severe distortion of the long-range structure. Overall, this work demonstrates how the XRS technique, allowing investigation of low Z elements such as C and B in the bulk, can be used to acquire valuable information on the electronic structure of solid electrolytes and battery materials in general.

2.
J Phys Chem C Nanomater Interfaces ; 126(12): 5435-5442, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35392436

RESUMO

X-ray Raman spectroscopy (XRS) is an emerging spectroscopic technique that utilizes inelastic scattering of hard X-rays to study X-ray absorption edges of low Z elements in bulk material. It was used to identify and quantify the amount of carbonyl bonds in a cathode sample, in order to track the redox reaction inside metal-organic batteries during the charge/discharge cycle. XRS was used to record the oxygen K-edge absorption spectra of organic polymer cathodes from different multivalent metal-organic batteries. The amount of carbonyl bond in each sample was determined by modeling the oxygen K-edge XRS spectra with the linear combination of two reference compounds that mimicked the fully charged and the fully discharged phases of the battery. To interpret experimental XRS spectra, theoretical calculations of oxygen K-edge absorption spectra based on density functional theory were performed. Overall, a good agreement between the amount of carbonyl bond present during different stages of battery cycle, calculated from linear combination of standards, and the amount obtained from electrochemical characterization based on measured capacity was achieved. The electrochemical mechanism in all studied batteries was confirmed to be a reduction of double carbonyl bond and the intermediate anion was identified with the help of theoretical calculations. X-ray Raman spectroscopy of the oxygen K-edge was shown to be a viable characterization technique for accurate tracking of the redox reaction inside metal-organic batteries.

3.
Phys Chem Chem Phys ; 23(27): 14845-14856, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223594

RESUMO

Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.

4.
J Synchrotron Radiat ; 28(Pt 4): 1184-1192, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212883

RESUMO

The IRIXS Spectrograph represents a new design of an ultra-high-resolution resonant inelastic X-ray scattering (RIXS) spectrometer that operates at the Ru L3-edge (2840 eV). First proposed in the field of hard X-rays by Shvyd'ko [(2015), Phys. Rev. A, 91, 053817], the X-ray spectrograph uses a combination of laterally graded multilayer mirrors and collimating/dispersing Ge(111) crystals optics in a novel spectral imaging approach to overcome the energy resolution limitation of a traditional Rowland-type spectrometer [Gretarsson et al. (2020), J. Synchrotron Rad. 27, 538-544]. In combination with a dispersionless nested four-bounce high-resolution monochromator design that utilizes Si(111) and Al2O3(110) crystals, an overall energy resolution better than 35 meV full width at half-maximum has been achieved at the Ru L3-edge, in excellent agreement with ray-tracing simulations.

5.
Proc Natl Acad Sci U S A ; 117(48): 30220-30227, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203673

RESUMO

Using inelastic X-ray scattering beyond the dipole limit and hard X-ray photoelectron spectroscopy we establish the dual nature of the U [Formula: see text] electrons in U[Formula: see text] (M = Pd, Ni, Ru, Fe), regardless of their degree of delocalization. We have observed that the compounds have in common a local atomic-like state that is well described by the U [Formula: see text] configuration with the [Formula: see text] and [Formula: see text] quasi-doublet symmetry. The amount of the U 5[Formula: see text] configuration, however, varies considerably across the U[Formula: see text] series, indicating an increase of U 5f itineracy in going from M = Pd to Ni to Ru and to the Fe compound. The identified electronic states explain the formation of the very large ordered magnetic moments in [Formula: see text] and [Formula: see text], the availability of orbital degrees of freedom needed for the hidden order in [Formula: see text] to occur, as well as the appearance of Pauli paramagnetism in [Formula: see text] A unified and systematic picture of the U[Formula: see text] compounds may now be drawn, thereby providing suggestions for additional experiments to induce hidden order and/or superconductivity in U compounds with the tetragonal body-centered [Formula: see text] structure.

6.
J Synchrotron Radiat ; 27(Pt 2): 538-544, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32153295

RESUMO

A new resonant inelastic X-ray scattering (RIXS) instrument has been constructed at beamline P01 of the PETRA III synchrotron. This instrument has been named IRIXS (intermediate X-ray energy RIXS) and is dedicated to X-rays in the tender-energy regime (2.5-3.5 keV). The range covers the L2,3 absorption edges of many of the 4d elements (Mo, Tc, Ru, Rh, Pd and Ag), offering a unique opportunity to study their low-energy magnetic and charge excitations. The IRIXS instrument is currently operating at the Ru L3-edge (2840 eV) but can be extended to the other 4d elements using the existing concept. The incoming photons are monochromated with a four-bounce Si(111) monochromator, while the energy analysis of the outgoing photons is performed by a diced spherical crystal analyzer featuring (102) lattice planes of quartz (SiO2). A total resolution of 100 meV (full width at half-maximum) has been achieved at the Ru L3-edge, a number that is in excellent agreement with ray-tracing simulations.

7.
Nat Commun ; 10(1): 5447, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784516

RESUMO

The one-dimensional cobaltate Ca[Formula: see text]Co[Formula: see text]O[Formula: see text] is an intriguing material having an unconventional magnetic structure, displaying quantum tunneling phenomena in its magnetization. Using a newly developed experimental method, [Formula: see text]-core-level non-resonant inelastic x-ray scattering ([Formula: see text]-NIXS), we were able to image the atomic Co [Formula: see text] orbital that is responsible for the Ising magnetism in this system. We can directly observe that corrections to the commonly accepted ideal prismatic trigonal crystal field scheme occur in Ca[Formula: see text]Co[Formula: see text]O[Formula: see text], and it is the complex [Formula: see text] orbital occupied by the sixth electron at the high-spin Co[Formula: see text] ([Formula: see text]) sites that generates the Ising-like behavior. The ability to directly relate the orbital occupation with the local crystal structure is essential to model the magnetic properties of this system.

8.
J Synchrotron Radiat ; 25(Pt 4): 1030-1035, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979164

RESUMO

In the context of a novel, high-resolution resonant inelastic X-ray scattering spectrometer, a flat-crystal-based quartz analyzer system has recently been demonstrated to provide an unprecedented intrinsic-energy resolution of 3.9 meV at the Ir L3 absorption edge (11.215 keV) [Kim et al. (2018) Sci. Rep. 8, 1958]. However, the overall instrument resolution was limited to 9.7 meV because of an 8.9 meV incident band pass, generated by the available high-resolution four-bounce Si(844) monochromator. In order to better match the potent resolving power of the novel analyzer with the energy band pass of the incident beam, a quartz(309)-based double-bounce, high-resolution monochromator was designed and implemented, expected to yield an overall instrument resolution of 6.0 meV. The choice of lower-symmetry quartz is very attractive because of its wealth of suitable near-backscattering reflections. However, it was found that during room-temperature operation typical levels of incident power, barely affecting the Si monochromator, caused substantial thermal distortions in the first crystal of the quartz monochromator, rendering it practically unusable. Finite-element analyses and heat-flow analyses corroborate this finding. As a high-flux, lower resolution (15.8 meV) alternative, a two-bounce sapphire(078) version was also tested and found to be less affected than quartz, but notably more than silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA