Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Mais filtros

Base de dados
Intervalo de ano de publicação
Geobiology ; 17(5): 551-563, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31325234


Bacteriohopanepolyols (BHPs) are pentacyclic triterpenoid lipids that contribute to the structural integrity and physiology of some bacteria. Because some BHPs originate from specific classes of bacteria, BHPs have potential as taxonomically and environmentally diagnostic biomarkers. For example, a stereoisomer of bacteriohopanetetrol (informally BHT II) has been associated with anaerobic ammonium oxidation (anammox) bacteria and suboxic to anoxic marine environments where anammox is active. As a result, the detection of BHT II in the sedimentary record and fluctuations in the relative abundance of BHT II may inform reconstructions of nitrogen cycling and ocean redox changes through the geological record. However, there are uncertainties concerning the sources of BHT II and whether or not BHT II is produced in abundance in non-marine environments, both of which are pertinent to interpretations of BHT II signatures in sediments. To address these questions, we investigate the BHP composition of benthic microbial mats from Lake Fryxell, Antarctica. Lake Fryxell is a perennially ice-covered lake with a sharp oxycline in a density-stabilized water column. We describe the diversity and abundance of BHPs in benthic microbial mats across a transect from oxic to anoxic conditions. Generally, BHP abundances and diversity vary with the morphologies of microbial mats, which were previously shown to reflect local environmental conditions, such as irradiance and oxygen and sulfide concentrations. BHT II was identified in mats that exist within oxic to anoxic portions of the lake. However, anammox bacteria have yet to be identified in Lake Fryxell. We examine our results in the context of BHPs as biomarkers in modern and ancient environments.

Bactérias/metabolismo , Sedimentos Geológicos/análise , Lipídeos/análise , Triterpenos Pentacíclicos/análise , Regiões Antárticas , Bactérias/química , Fenômenos Fisiológicos Bacterianos , Lagos/química , Polímeros/análise
Geobiology ; 17(3): 308-319, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30707499


Bacteriohopanepolyols (BHPs) are bacterial membrane lipids that may be used as biological or environmental biomarkers. Previous studies have described the diversity, distribution, and abundance of BHPs in a variety of modern environments. However, the regulation of BHP production in polar settings is not well understood. Benthic microbial mats from ice-covered lakes of the McMurdo Dry Valleys, Antarctica provide an opportunity to investigate the sources, physiological roles, and preservation of BHPs in high-latitude environments. Lake Vanda is one of the most stable lakes on Earth, with microbial communities occupying specific niches along environmental gradients. We describe the influence of mat morphology and local environmental conditions on the diversity and distribution of BHPs and their biological sources in benthic microbial mats from Lake Vanda. The abundance and diversity of C-2 methylated hopanoids (2-MeBHP) are of particular interest, given that their stable degradation products, 2-methylhopanes, are among the oldest and most prevalent taxonomically informative biomarkers preserved in sedimentary rocks. Furthermore, the interpretation of sedimentary 2-methylhopanes is of great interest to the geobiology community. We identify cyanobacteria as the sole source of 2-MeBHP in benthic microbial mats from Lake Vanda and assess the hypothesis that 2-MeBHP are regulated in response to a particular environmental variable, namely solar irradiance.

Cianobactérias/metabolismo , Lagos/química , Lipídeos de Membrana/análise , Regiões Antárticas , Cianobactérias/isolamento & purificação , Meio Ambiente , Camada de Gelo , Lagos/microbiologia
Appl Environ Microbiol ; 83(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087535


Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens, a species that is associated with high rates of Fe(II) oxidation in laboratory studies.IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two operational taxonomic units (OTUs) of Ferrovum myxofaciens, a taxon associated with high laboratory rates of iron oxidation. This research represents a step forward in identifying taxa that can be used to enhance cost-effective AMD bioremediation.

Bactérias/metabolismo , Betaproteobacteria/metabolismo , Minas de Carvão , Compostos Férricos/química , Ferro/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Ácidos , Bactérias/isolamento & purificação , Fenômenos Fisiológicos Bacterianos , Betaproteobacteria/isolamento & purificação , Biodegradação Ambiental , Carvão Mineral , Microbiologia Ambiental , Concentração de Íons de Hidrogênio , Resíduos Industriais , Ferro/química , Consórcios Microbianos , Mineração , Oxirredução , Pennsylvania , Poluentes da Água
Appl Environ Microbiol ; 82(12): 3611-3621, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27084004


UNLABELLED: Two acid mine drainage (AMD) sites in the Appalachian bituminous coal basin were selected to enrich for Fe(II)-oxidizing microbes and measure rates of low-pH Fe(II) oxidation in chemostatic bioreactors. Microbial communities were enriched for 74 to 128 days in fed-batch mode, then switched to flowthrough mode (additional 52 to 138 d) to measure rates of Fe(II) oxidation as a function of pH (2.1 to 4.2) and influent Fe(II) concentration (80 to 2,400 mg/liter). Biofilm samples were collected throughout these operations, and the microbial community structure was analyzed to evaluate impacts of geochemistry and incubation time. Alpha diversity decreased as the pH decreased and as the Fe(II) concentration increased, coincident with conditions that attained the highest rates of Fe(II) oxidation. The distribution of the seven most abundant bacterial genera could be explained by a combination of pH and Fe(II) concentration. Acidithiobacillus, Ferrovum, Gallionella, Leptospirillum, Ferrimicrobium, Acidiphilium, and Acidocella were all found to be restricted within specific bounds of pH and Fe(II) concentration. Temporal distance, defined as the cumulative number of pore volumes from the start of flowthrough mode, appeared to be as important as geochemical conditions in controlling microbial community structure. Both alpha and beta diversities of microbial communities were significantly correlated to temporal distance in the flowthrough experiments. Even after long-term operation under nearly identical geochemical conditions, microbial communities enriched from the different sites remained distinct. While these microbial communities were enriched from sites that displayed markedly different field rates of Fe(II) oxidation, rates of Fe(II) oxidation measured in laboratory bioreactors were essentially the same. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor startup. IMPORTANCE: This study showed that different microbial communities enriched from two sites maintained distinct microbial community traits inherited from their respective seed materials. Long-term operation (up to 128 days of fed-batch enrichment followed by up to 138 days of flowthrough experiments) of these two systems did not lead to the same, or even more similar, microbial communities. However, these bioreactors did oxidize Fe(II) and remove total iron [Fe(T)] at very similar rates. These results suggest that the performance of suspended-growth bioreactors for AMD treatment may not be strongly dependent on the inoculum used for reactor startup. This would be advantageous, because system performance should be well constrained and predictable for many different sites.

Bactérias/classificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Ferro/metabolismo , Consórcios Microbianos , Concentração de Íons de Hidrogênio , Oxirredução , Microbiologia do Solo , Fatores de Tempo
Appl Environ Microbiol ; 81(4): 1242-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25501473


A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less expensive. We used full-cycle rRNA methods to describe the composition of sediment communities at two geochemically similar acidic discharges, Upper and Lower Red Eyes in Somerset County, PA, USA. The dominant microorganisms at both discharges were acidophilic Gallionella-like organisms, "Ferrovum" spp., and Acidithiobacillus spp. Archaea and Leptospirillum spp. accounted for less than 2% of cells. The distribution of microorganisms at the two sites could be best explained by a combination of iron(II) concentration and pH. Populations of the Gallionella-like organisms were restricted to locations with pH>3 and iron(II) concentration of >4 mM, while Acidithiobacillus spp. were restricted to pH<3 and iron(II) concentration of <4 mM. Ferrovum spp. were present at low levels in most samples but dominated sediment communities at pH<3 and iron(II) concentration of >4 mM. Our findings offer a predictive framework that could prove useful for describing the distribution of microorganisms in acid mine drainage, based on readily accessible geochemical parameters.

Ácidos/metabolismo , Bactérias/isolamento & purificação , Carvão Mineral/microbiologia , Sedimentos Geológicos/microbiologia , Ferro/metabolismo , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carvão Mineral/análise , Sedimentos Geológicos/química , Mineração , Dados de Sequência Molecular , Oxirredução , Filogenia , Águas Residuárias/química
Philos Trans R Soc Lond B Biol Sci ; 368(1622): 20120383, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23754819


Mechanisms that govern the coexistence of multiple biological species have been studied intensively by ecologists since the turn of the nineteenth century. Microbial ecologists in the meantime have faced many fundamental challenges, such as the lack of an ecologically coherent species definition, lack of adequate methods for evaluating population sizes and community composition in nature, and enormous taxonomic and functional diversity. The accessibility of powerful, culture-independent molecular microbiology methods offers an opportunity to close the gap between microbial science and the main stream of ecological theory, with the promise of new insights and tools needed to meet the grand challenges humans face as planetary engineers and galactic explorers. We focus specifically on resources related to energy metabolism because of their direct links to elemental cycling in the Earth's history, engineering applications and astrobiology. To what extent does the availability of energy resources structure microbial communities in nature? Our recent work on sulfur- and iron-oxidizing autotrophs suggests that apparently subtle variations in the concentration ratios of external electron donors and acceptors select for different microbial populations. We show that quantitative knowledge of microbial energy niches (population-specific patterns of energy resource use) can be used to predict variations in the abundance of specific taxa in microbial communities. Furthermore, we propose that resource ratio theory applied to micro-organisms will provide a useful framework for identifying how environmental communities are organized in space and time.

Bactérias/classificação , Bactérias/genética , Ecossistema , Metabolismo Energético/genética , Variação Genética , Seleção Genética , Demografia