Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 10(48): 23001-23011, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30500043

RESUMO

Quatsomes (QS) are unilamellar nanovesicles constituted by quaternary ammonium surfactants and sterols in defined molar ratios. Unlike conventional liposomes, QS are stable upon long storage such as for several years, they show outstanding vesicle-to-vesicle homogeneity regarding size and lamellarity, and they have the structural and physicochemical requirements to be a potential platform for site-specific delivery of hydrophilic and lipophilic molecules. Knowing in detail the structure and mechanical properties of the QS membrane is of great importance for the design of deformable and flexible nanovesicle alternatives, highly pursued in nanomedicine applications such as the transdermal administration route. In this work, we report the first study on the detailed structure of the cholesterol : CTAB QS membrane at the nanoscale, using atomic force microscopy (AFM) and spectroscopy (AFM-FS) in a controlled liquid environment (ionic medium and temperature) to assess the topography of supported QS membranes (SQMs) and to evaluate the local membrane mechanics. We further perform molecular dynamics (MD) simulations to provide an atomistic interpretation of the obtained results. Our results are direct evidence of the bilayer nature of the QS membrane, with characteristics of a fluid-like membrane, compact and homogeneous in composition, and with structural and mechanical properties that depend on the surrounding environment. We show how ions alter the lateral packing, modifying the membrane mechanics. We observe that according to the ionic environment and temperature, different domains may coexist in the QS membranes, ascribed to variations in molecular tilt angles. Our results indicate that QS membrane properties may be easily tuned by altering the lateral interactions with either different environmental ions or counterions.

2.
Chemistry ; 24(44): 11386-11392, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-29869811

RESUMO

Diketopyrrolopyrroles (DPPs) have recently attracted much interest as very bright and photostable red-emitting molecules. However, their tendency to form nonfluorescent aggregates in water through the aggregation-caused quenching (ACQ) effect is a major issue that limits their application under the microscope. Herein, two DPP molecules have been incorporated into the membrane of highly stable and water-soluble quatsomes (QS; nanovesicles composed of surfactants and sterols), which allow their nanostructuration in water and, at the same time, limits the ACQ effect. The obtained fluorescent organic nanoparticles showed superior structural homogeneity, along with long-term colloidal and optical stability. A thorough one- (1P) and two-photon (2P) fluorescence characterization revealed the promising photophysical features of these fluorescent nanovesicles, which showed a high 1P and 2P brightness. Finally, the fluorescent QSs were used for the in vitro bioimaging of Saos-2 osteosarcoma cell lines; this demonstrates their potential as nanomaterials for bioimaging applications.


Assuntos
Corantes Fluorescentes/química , Cetonas/química , Nanoestruturas/química , Imagem Óptica/métodos , Pirróis/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Luz , Tamanho da Partícula , Fótons , Solubilidade , Propriedades de Superfície , Água
3.
ACS Nano ; 11(11): 10774-10784, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28846386

RESUMO

Microemulsions are extensively used in advanced material and chemical processing. However, considerable amounts of surfactant are needed for their formulation, which is a drawback due to both economic and ecological reasons. Here, we describe the nanostructuration of recently discovered surfactant-free, carbon dioxide (CO2)-based microemulsion-like systems in a water/organic-solvent/CO2 pressurized ternary mixture. "Water-rich" nanodomains embedded into a "water-depleted" matrix have been observed and characterized by the combination of Raman spectroscopy, molecular dynamics simulations, and small-angle neutron scattering. These single-phase fluids show a reversible, pressure-responsive nanostructuration; the "water-rich" nanodomains at a given pressure can be instantaneously degraded/expanded by increasing/decreasing the pressure, resulting in a reversible, rapid, and homogeneous mixing/demixing of their content. This pressure-triggered responsiveness, together with other inherent features of these fluids, such as the absence of any contaminant in the ternary mixture (e.g., surfactant), their spontaneous formation, and their solvation capability (enabling the dissolution of both hydrophobic and hydrophilic molecules), make them appealing complex fluid systems to be used in molecular material processing and in chemical engineering.

4.
Biol Chem ; 398(2): 277-287, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27508963

RESUMO

Poly(N-vinyl pyrrolidone)-based-nanogels (NGs), produced by e-beam irradiation, are conjugated with monoclonal antibodies (mAb) for active targeting purposes. The uptake of immuno-functionalized nanogels is tested in an endothelial cell line, ECV304, using confocal and epifluorescence microscopy. Intracellular localization studies reveal a faster uptake of the immuno-nanogel conjugate with respect to the 'bare' nanogel. The specific internalization pathway of these immuno-nanogels is clarified by selective endocytosis inhibition experiments, flow cytometry and confocal microscopy. Active targeting ability is also verified by conjugating a monoclonal antibody which recognizes the αvß3 integrin on activated endothelial cells. Epifluorescence images of the 'wound healing assay' on ECV304 cells provide evidence of nanogels localization only in the target cells. Therefore, the immuno-nanogels produced have the potential to recognize specific cell types in heterogeneous systems, which makes them promising candidates for targeted drug delivery applications.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Portadores de Fármacos/química , Nanoestruturas/química , Anticorpos Monoclonais/metabolismo , Transporte Biológico , Linhagem Celular , Géis , Humanos , Povidona/química
5.
Molecules ; 21(11)2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27886088

RESUMO

(1) Background: A new family of nanosystems able to discern between normal and tumor cells and to release a therapeutic agent in controlled way were synthetized by e-beam irradiation. This technique permits to obtain biocompatible, sterile, carboxyl-functionalized polyvinylpyrrolidone (PVP-co-acrylic acid) nanogels (NGs); (2) Methods: Here, we performed a targeting strategy based on the recognition of over-expressed proteins on tumor cells, like the folate receptor. The selective targeting was demonstrated by co-culture studies and flow cytometry analysis, using folate conjugated NGs. Moreover, nanoparticles were conjugated to a chemotherapeutic drug or to a pro-apoptotic siRNA through a glutathione sensitive spacer, in order to obtain a controlled release mechanism, specific for cancer cells. The drug efficiency was tested on tumor and healthy cells by flow cytometric analysis, confocal and epifluorescence microscopy and cytotoxicity assay; the siRNA effect was investigated by RNAi experiment; (3) Results: The data obtained showed that the use of NGs permits a faster cargo release in cancer cells, in response to high cytosolic glutathione level, also improving their efficacy; (4) Conclusion: The possibility of releasing biological molecules in a controlled way and to recognize a specific tumor target allows overcoming the typical limits of the classic cancer therapy.


Assuntos
Antioxidantes/farmacologia , Doxorrubicina/farmacologia , Neoplasias/metabolismo , Polietilenoglicóis/química , Polietilenoimina/química , RNA Interferente Pequeno/farmacologia , Animais , Antioxidantes/química , Linhagem Celular Tumoral , Ácido Fólico/química , Ácido Fólico/metabolismo , Transportadores de Ácido Fólico/antagonistas & inibidores , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Nanogéis , Nanopartículas/química , Neoplasias/tratamento farmacológico , Oxirredução/efeitos dos fármacos , Tamanho da Partícula , Polietilenoglicóis/farmacologia , Polietilenoimina/farmacologia , Povidona/química , Povidona/farmacologia
6.
J Nanosci Nanotechnol ; 15(5): 3445-67, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26504965

RESUMO

Controlled synthesis of nanoscalar and nanostructured materials enables the development of novel functional materials with fine-tuned optical, mechanical, electronic, magnetic, conductive and catalytic properties that are of use in numerous applications. These materials have also found their potential use in medicine as vehicles for drug delivery, in diagnostics or in combinations thereof. In principle, nanoparticles can be divided into two broad categories, organic and inorganic nanoparticles. For both types of nanoparticles there are numerous possible synthetic routes. Considering the large difference in nature of these materials and the elementary reactions involved in the synthetic routes, most manufacturing techniques are complex and only suitable for one type of particle. Interestingly, radiation chemistry, i.e., the use of ionizing radiation from radioisotopes and accelerators to induce nanomaterials or chemical changes in materials, has proven to be a versatile tool for controlled manufacturing of both organic and inorganic nanoparticles. The advantages of using radiation chemistry for this purpose are many, such as low energy consumption, minimal use of potentially harmful chemicals and simple production schemes. For medical applications one more advantage is that the material can be sterile as manufactured. Radiation-induced synthesis can be carried out in aqueous systems, which minimizes the use of organic solvents and the need for separation and purification of the final product. The radiation chemistry of water is well known, as are the various ways of fine-tuning the reactivity of the system towards a desired target by adding different solutes. This, in combination with the controllable and adjustable irradiation process parameters, makes the technique superior to most other chemical methods. In this review, we discuss the fundamentals of radiation chemistry and radiation-induced synthesis of nanoparticles in aqueous solutions. The impact of dose and dose rate as well as of controlled addition of various solutes on the final particle composition, size and size distribution are described in detail and discussed in terms of reaction mechanism and kinetics.

7.
Biomacromolecules ; 13(6): 1805-17, 2012 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-22571354

RESUMO

A scalable, single-step, synthetic approach for the manufacture of biocompatible, functionalized micro- and nanogels is presented. In particular, poly(N-vinyl pyrrolidone)-grafted-(aminopropyl)methacrylamide microgels and nanogels were generated through e-beam irradiation of PVP aqueous solutions in the presence of a primary amino-group-carrying monomer. Particles with different hydrodynamic diameters and surface charge densities were obtained at the variance of the irradiation conditions. Chemical structure was investigated by different spectroscopic techniques. Fluorescent variants were generated through fluorescein isothiocyanate attachment to the primary amino groups grafted to PVP, to both quantify the available functional groups for bioconjugation and follow nanogels localization in cell cultures. Finally, a model protein, bovine serum albumin, was conjugated to the nanogels to demonstrate the attachment of biologically relevant molecules for targeting purposes in drug delivery. The described approach provides a novel strategy to fabricate biohybrid nanogels with a very promising potential in nanomedicine.


Assuntos
Materiais Biocompatíveis/síntese química , Elétrons , Géis/síntese química , Nanopartículas/química , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Géis/química , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...