Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2139, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358489

RESUMO

A longstanding goal in science and engineering is to mimic the size, structure, and functionality present in biology with synthetic analogs. Today, synthetic globular polymers of several million molecular weight are unknown, and, yet, these structures are expected to exhibit unanticipated properties due to their size, compactness, and low inter-chain interactions. Here we report the gram-scale synthesis of dendritic polymers, mega hyperbranched polyglycerols (mega HPGs), in million daltons. The mega HPGs are highly water soluble, soft, nanometer-scale single polymer particles that exhibit low intrinsic viscosities. Further, the mega HPGs are lubricants acting as interposed single molecule ball bearings to reduce the coefficient of friction between both hard and soft natural surfaces in a size dependent manner. We attribute this result to their globular and single particle nature together with its exceptional hydration. Collectively, these results set the stage for new opportunities in the design, synthesis, and evaluation of mega polymers.

2.
Nat Commun ; 11(1): 1276, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152281

RESUMO

Bacteria are an enormous and largely untapped reservoir of biosensing proteins. We describe an approach to identify and isolate bacterial allosteric transcription factors (aTFs) that recognize a target analyte and to develop these TFs into biosensor devices. Our approach utilizes a combination of genomic screens and functional assays to identify and isolate biosensing TFs, and a quantum-dot Förster Resonance Energy Transfer (FRET) strategy for transducing analyte recognition into real-time quantitative measurements. We use this approach to identify a progesterone-sensing bacterial aTF and to develop this TF into an optical sensor for progesterone. The sensor detects progesterone in artificial urine with sufficient sensitivity and specificity for clinical use, while being compatible with an inexpensive and portable electronic reader for point-of-care applications. Our results provide proof-of-concept for a paradigm of microbially-derived biosensors adaptable to inexpensive, real-time sensor devices.

3.
Cancer Res ; 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32220831

RESUMO

This review highlights current treatments, limitations, and pitfalls in the management of pancreatic cancer and discusses current research in novel targets and drug development to overcome these clinical challenges. We begin with a review of the clinical landscape of pancreatic cancer, including genetic and environmental risk factors, as well as limitations in disease diagnosis and prevention. We next discuss current treatment paradigms for pancreatic cancer and the shortcomings of targeted therapy in this disease. Targeting major driver mutations in pancreatic cancer, such as dysregulation in the KRAS and TGF-ß signaling pathways, have failed to improve survival outcomes compared to non-targeted chemotherapy; thus, we describe new advances in therapy such as Ras binding pocket inhibitors. We then review next-generation approaches in nanomedicine and drug delivery, focusing on preclinical advancements in novel optical probes, antibodies, small molecule agents, and nucleic acids to improve surgical outcomes in resectable disease, augment current therapies, expand druggable targets, and minimize morbidity. We conclude by summarizing progress in current research, identifying areas for future exploration in drug development and nanotechnology, and discussing future prospects for management of this disease.

4.
Artigo em Inglês | MEDLINE | ID: mdl-32044093

RESUMO

OBJECTIVE: Malignant pleural mesothelioma is a lethal malignancy with poor survival and high local recurrence rates despite multimodal therapy with cytoreduction and chemoradiation. We evaluated the antitumor efficacy of a paclitaxel-loaded pH-responsive expansile nanoparticle (PTX-eNP) in 2 clinically relevant murine xenograft models of malignant pleural mesothelioma. METHODS: Luciferase-transfected MSTO-211H human mesothelioma cells were injected into the thoracic cavity of immunodeficient Nu/J mice. Tumor burden was monitored by bioluminescent imaging. Animals were randomized into 2 models of disease treatment chemotherapy with PTX-eNPs alone delivered locally for early limited disease or cytoreductive surgery plus local PTX-eNP chemotherapy for advanced disease. Within each disease model, anti-tumor efficacy of PTX-eNP was compared against standard formulation paclitaxel and drug-empty nanoparticles. Influence on survival was calculated. Fluorescently labeled PTX-eNPs and immunohistochemistry evaluated in vivo drug localization to tumor. RESULTS: Intrathoracic injection of MSTO-211H resulted in large tumor deposits distributed within the pleural space of the murine thoracic cavity. Local multidose treatment with PTX-eNPs alone in limited stage disease more than doubled survival compared with drug-empty nanoparticles (P ≤ .0001) and standard formulation paclitaxel (P = .0004). In the model of advanced disease, local multidose treatment with PTX-eNPs following cytoreductive surgery also prolonged survival by 126% and 69.4% compared with drug-empty nanoparticles (P = .0018) and standard formulation paclitaxel (P = .03457), respectively. Immunohistology demonstrated PTX-eNP accumulation within tumor cells in vitro and in vivo. CONCLUSIONS: Local delivery of paclitaxel via eNPs confers prolonged survival in a murine model of malignant pleural mesothelioma as single modality treatment for limited disease and in combination with cytoreductive surgery for advanced disease.

5.
Biomacromolecules ; 21(4): 1499-1506, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32101401

RESUMO

Expansile nanoparticles (eNPs) are a promising pH-responsive polymeric drug delivery vehicle, as demonstrated in multiple intraperitoneal cancer models. However, previous delivery routes were limited to intraperitoneal injection and to a single agent, paclitaxel. In this study, we preliminarily evaluate the biodistribution and in vivo toxicity of eNPs in mice after intravenous injection. The eNPs localize predominantly to the liver, without detectable acute toxicity in the liver or other key organs. On the basis of these results, we encapsulated FQI1, a promising lead compound for treatment of hepatocellular carcinoma, in eNPs. eNPs are taken up by cancerous and noncancerous human liver cells in vitro, although at different rates. FQI1-loaded eNPs release FQI1 in a pH-dependent manner and limit proliferation equivalently to unencapsulated FQI1 in immortalized hepatocytes in vitro. eNPs are a versatile platform delivery system for therapeutic compounds and have potential utility in the treatment of liver disease.

6.
Mol Cancer Ther ; 19(1): 89-100, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31909733

RESUMO

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy in women worldwide and the fifth most common cause of cancer-related deaths among U.S. women. New therapies are needed to treat HGSOC, particularly because most patients develop resistance to current first-line therapies. Many natural product and fungal metabolites exhibit anticancer activity and represent an untapped reservoir of potential new agents with unique mechanism(s) of action. Verticillin A, an epipolythiodioxopiperazine alkaloid, is one such compound, and our recent advances in fermentation and isolation are now enabling evaluation of its anticancer activity. Verticillin A demonstrated cytotoxicity in HGSOC cell lines in a dose-dependent manner with a low nmol/L IC50 Furthermore, treatment with verticillin A induced DNA damage and caused apoptosis in HGSOC cell lines OVCAR4 and OVCAR8. RNA-Seq analysis of verticillin A-treated OVCAR8 cells revealed an enrichment of transcripts in the apoptosis signaling and the oxidative stress response pathways. Mass spectrometry histone profiling confirmed reports that verticillin A caused epigenetic modifications with global changes in histone methylation and acetylation marks. To facilitate in vivo delivery of verticillin A and to monitor its ability to reduce HGSOC tumor burden, verticillin A was encapsulated into an expansile nanoparticle (verticillin A-eNP) delivery system. In an in vivo human ovarian cancer xenograft model, verticillin A-eNPs decreased tumor growth and exhibited reduced liver toxicity compared with verticillin A administered alone. This study confirmed that verticillin A has therapeutic potential for treatment of HGSOC and that encapsulation into expansile nanoparticles reduced liver toxicity.

7.
Ann Biomed Eng ; 48(2): 556-567, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31576504

RESUMO

Early degenerative changes of articular cartilage are detected using contrast-enhanced computed tomography (CT) with a cationic contrast agent (CA). However, cationic CA diffusion into degenerated cartilage decreases with proteoglycan depletion and increases with elevated water content, thus hampering tissue evaluation at early diffusion time points. Furthermore, the contrast at synovial fluid-cartilage interface diminishes as a function of diffusion time hindering accurate cartilage segmentation. For the first time, we employ quantitative dual-energy CT (QDECT) imaging utilizing a mixture of three CAs (cationic CA4+ and non-ionic gadoteridol which are sensitive to proteoglycan and water contents, respectively, and bismuth nanoparticles which highlight the cartilage surface) to simultaneously segment the articulating surfaces and determine of the cartilage condition. Intact healthy, proteoglycan-depleted, and mechanically injured bovine cartilage samples (n = 27) were halved and imaged with synchrotron microCT 2-h post immersion in triple CA or in dual CA (CA4+ and gadoteridol). CA4+ and gadoteridol partitions were determined using QDECT, and pairwise evaluation of these partitions was conducted for samples immersed in dual and triple CAs. In conclusion, the triple CA method is sensitive to proteoglycan depletion while maintaining sufficient contrast at the articular surface to enable detection of cartilage lesions caused by mechanical impact.

8.
J Orthop Res ; 38(3): 563-573, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31535728

RESUMO

Dual contrast micro computed tomography (CT) shows potential for detecting articular cartilage degeneration. However, the performance of conventional CT systems is limited by beam hardening, low image resolution (full-body CT), and long acquisition times (conventional microCT). Therefore, to reveal the full potential of the dual contrast technique for imaging cartilage composition we employ the technique using synchrotron microCT. We hypothesize that the above-mentioned limitations are overcome with synchrotron microCT utilizing monochromatic X-ray beam and fast image acquisition. Human osteochondral samples (n = 41, four cadavers) were immersed in a contrast agent solution containing two agents (cationic CA4+ and non-ionic gadoteridol) and imaged with synchrotron microCT at an early diffusion time point (2 h) and at diffusion equilibrium (72 h) using two monochromatic X-ray energies (32 and 34 keV). The dual contrast technique enabled simultaneous determination of CA4+ (i.e., proteoglycan content) and gadoteridol (i.e., water content) partitions within cartilage. Cartilage proteoglycan content and biomechanical properties correlated significantly (0.327 < r < 0.736, p < 0.05) with CA4+ partition in superficial and middle zones at both diffusion time points. Normalization of the CA4+ partition with gadoteridol partition within the cartilage significantly (p < 0.05) improved the detection sensitivity for human osteoarthritic cartilage proteoglycan content, biomechanical properties, and overall condition (Mankin, Osteoarthritis Research Society International, and International Cartilage Repair Society grading systems). The dual energy technique combined with the dual contrast agent enables assessment of human articular cartilage proteoglycan content and biomechanical properties based on CA4+ partition determined using synchrotron microCT. Additionally, the dual contrast technique is not limited by the beam hardening artifact of conventional CT systems. © 2019 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 38:563-573, 2020.

9.
Angew Chem Int Ed Engl ; 59(2): 622-626, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31650664

RESUMO

Reported here is the first aqueous ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs) using α-amino-poly(ethylene oxide) as a macroinitiator to protect the NCA monomers from hydrolysis through spontaneous in situ self-assembly (ISA). This ROPISA process affords well-defined amphiphilic diblock copolymers that simultaneously form original needle-like nanoparticles.

10.
Angew Chem Int Ed Engl ; 59(2): 704-710, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31701611

RESUMO

Mucoadhesive polymers are of significant interest to the pharmaceutical, medical device, and cosmetic industries. Polysaccharides possessing charged functional groups, such as chitosan, are known for mucoadhesive properties but suffer from poor chemical definition and solubility, while the chemical synthesis of polysaccharides is challenging with few reported examples of synthetic carbohydrate polymers with engineered-in ionic functionality. We report the design, synthesis, and evaluation of a synthetic, cationic, enantiopure carbohydrate polymer inspired by the structure of chitosan. These water-soluble, cytocompatible polymers are prepared via an anionic ring-opening polymerization of a bicyclic ß-lactam sugar monomer. The synthetic method provides control over the site of amine functionalization and the length of the polymer while providing narrow dispersities. These well-defined polymers are mucoadhesive as documented in single-molecule scale (AFM), bulk solution phase (FRAP), and ex vivo tissue experiments. Polymer length and functionality affects bioactivity as long, charged polymers display higher mucoadhesivity than long, neutral polymers or short, charged polymers.

11.
Adv Healthc Mater ; 9(1): e1901217, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31746140

RESUMO

Direct laser writing via two-photon polymerization (2PP) is an emerging micro- and nanofabrication technique to prepare predetermined and architecturally precise hydrogel scaffolds with high resolution and spatial complexity. As such, these scaffolds are increasingly being evaluated for cell and tissue engineering applications. This article first discusses the basic principles and photoresists employed in 2PP fabrication of hydrogels, followed by an in-depth introduction of various mechanical and biological characterization techniques used to assess the fabricated structures. The design requirements for cell and tissue related applications are then described to guide the engineering, physicochemical, and biological efforts. Three case studies in bone, cancer, and cardiac tissues are presented that illustrate the need for structured materials in the next generation of clinical applications. This paper concludes by summarizing the progress to date, identifying additional opportunities for 2PP hydrogel scaffolds, and discussing future directions for 2PP research.

12.
Nat Commun ; 10(1): 5478, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792214

RESUMO

Pressure sensitive adhesives are ubiquitous in commodity products such as tapes, bandages, labels, packaging, and insulation. With single use plastics comprising almost half of yearly plastic production, it is essential that the design, synthesis, and decomposition products of future materials, including polymer adhesives, are within the context of a healthy ecosystem along with comparable or superior performance to conventional materials. Here we show a series of sustainable polymeric adhesives, with an eco-design, that perform in both dry and wet environments. The terpolymerization of propylene oxide, glycidyl butyrate, and CO2, catalyzed by a cobalt salen complex bearing a quaternary ammonium salt, yields the poly(propylene-co-glycidyl butyrate carbonate)s (PPGBC)s. This polymeric adhesive system, composed of environmentally benign building blocks, implements carbon dioxide sequestration techniques, poses minimal environmental hazards, exhibits varied peel strengths from scotch tape to hot-melt wood-glue, and adheres to metal, glass, wood, and Teflon® surfaces.

13.
J Orthop Res ; 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31687789

RESUMO

Magnetic resonance imaging (MRI) and computed tomography (CT) are widely used to image cartilage and their diagnostic capability is enhanced in the presence of contrast agents. The aim of the study is to directly compare the performance between commercial anionic MRI (Gd(DTPA), Gd2-) and CT (Ioxaglate, Iox1-) contrast agents with novel cationic MRI (Gd(DTPA)Lys2 , Gd4+) and CT (CA4+) contrast agents for assessment of cartilage mechanical and biochemical properties using the ex vivo human osteoarthritis metacarpal cartilage model. First, indentation testing was conducted to obtain the compressive modulus of the human fifth metacarpals. The samples were then immersed in the anionic and cationic contrast agents prior to delayed gadolinium-enhanced MRI of cartilage and CT scanning, respectively. The cartilage glycosaminoglycan (GAG) content and distribution were determined using the 1,9-dimethylmethylene blue assay and Safranin-O histology. Cationic agents significantly accumulate in cartilage compared with anionic agents. Significant positive correlations (p < 0.05) exist between imaging results of cationic agents and GAG content (Gd4+: R2 = 0.43; CA4+: R2 = 0.67) and indentation equilibrium modulus (Gd4+: R2 = 0.48; CA4+: R2 = 0.77). Significant negative correlations are observed between anionic MRI relaxation times, but not contrast-enhanced computed tomography attenuation and cartilage GAG content (Gd2-: R2 = 0.56, p < 0.05; Iox1-: R2 = 0.31, p > 0.05) and indentation equilibrium modulus (Gd2-: R2 = 0.38, p < 0.05; Iox1-: R2 = 0.17, p > 0.05). MRI or CT with cationic contrast agents provides greater sensitivity than their anionic analogs at assessing the biochemical and biomechanical properties of ex vivo human metacarpal cartilage. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

14.
ACS Biomater Sci Eng ; 5(6): 3060-3067, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31608307

RESUMO

A poly(7-oxanorbornene-2-carboxylate) polymer containing pendent triethyleneglycol (TEG) chains of 2.8 MDa ("2.8M TEG") was synthesized and evaluated for long-term lubrication and wear reduction of ex vivo bovine cartilage as well as for synovitis in rats and dogs after intra-articular administration. Bovine cartilage surfaces were tested under torsional friction for 10,080 rotations while immersed in either saline, bovine synovial fluid (BSF), or 2.8M TEG. For each solution, coefficient of friction (µ), changes in surface roughness, and lost cartilage glycosaminoglycan were compared. To directly compare 2.8M TEG and BSF, additional samples were tested sequentially in BSF, BSF, 2.8M TEG, and then BSF. Finally, another set of samples were tested twice in saline to induce surface roughness and then tested in BSF, Synvisc, or 2.8M TEG to determine each treatment's effect on worn cartilage. Next, male Lewis rats were injected in one knee with 2.8M TEG or saline and evaluated for effects on gait, and female beagles were injected with either 2.8M TEG or saline in one knee, and their synovial tissues analyzed for inflammation by H&E staining. Treatment with 2.8M TEG lowers µ, lessens surface roughness, and minimizes glycosaminoglycan loss compared to saline. The 2.8M TEG also reduces µ compared to BSF in pairwise testing and on worn cartilage surfaces. Injection of 2.8M TEG in rat or beagle knees gives comparable effects to treatment with saline, and does not cause significant synovitis.

15.
Acta Biomater ; 100: 202-212, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31580960

RESUMO

Tissue engineering and regenerative medicine are two therapeutic strategies to treat, and to potentially cure, diseases affecting cartilaginous tissues, such as osteoarthritis and cartilage defects. Insights into the processes occurring during regeneration are essential to steer and inform development of the envisaged regenerative strategy, however tools are needed for longitudinal and quantitative monitoring of cartilage matrix components. In this study, we introduce a contrast-enhanced computed tomography (CECT)-based method using a cationic iodinated contrast agent (CA4+) for longitudinal quantification of glycosaminoglycans (GAG) in cartilage-engineered constructs. CA4+ concentration and scanning protocols were first optimized to ensure no cytotoxicity and a facile procedure with minimal radiation dose. Chondrocyte and mesenchymal stem cell pellets, containing different GAG content were generated and exposed to CA4+. The CA4+ content in the pellets, as determined by micro computed tomography, was plotted against GAG content, as measured by 1,9-dimethylmethylene blue analysis, and showed a high linear correlation. The established equation was used for longitudinal measurements of GAG content over 28 days of pellet culture. Importantly, this method did not adversely affect cell viability or chondrogenesis. Additionally, the CA4+ distribution accurately matched safranin-O staining on histological sections. Hence, we show proof-of-concept for the application of CECT, utilizing a positively charged contrast agent, for longitudinal and quantitative imaging of GAG distribution in cartilage tissue-engineered constructs. STATEMENT OF SIGNIFICANCE: Tissue engineering and regenerative medicine are promising therapeutic strategies for different joint pathologies such as cartilage defects or osteoarthritis. Currently, in vitro assessment on the quality and composition of the engineered cartilage mainly relies on destructive methods. Therefore, there is a need for the development of techniques that allow for longitudinal and quantitative imaging and monitoring of cartilage-engineered constructs. This work harnesses the electrostatic interactions between the negatively-charged glycosaminoglycans (GAGs) and a positively-charged contrast agent for longitudinal and non-destructive quantification of GAGs, providing valuable insight on GAG development and distribution in cartilage engineered constructs. Such technique can advance the development of regenerative strategies, not only by allowing continuous monitoring but also by serving as a pre-implantation screening tool.

16.
Med Eng Phys ; 73: 1-8, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31526590

RESUMO

Understanding hip osteoarthritis requires new investigational tools for quantitative studies of biophysical and biomechanical properties as well as for determination of structure. Three new protocols to study pathological changes in cartilage and to measure cartilage thickness in intact human hips are described using synchrotron contrast enhanced computed tomography (sCECT) with the iodinated contrast agent CA4+. Ten human cadaver hips were prepared and injected with CA4+ using three different methods, all of which included rotation and distraction of the joint. CA4+ diffusion into cartilage was monitored using sCECT. The thickness of acetabular and femoral cartilage was also measured. Diffusion times ranged from 2 h to 75 h, depending on the injection protocol and the cartilage region. Direct single injection of the contrast through the labrum resulted in the fastest diffusion times. The iodine attenuation coefficient, which reflects the contrast agent distribution in the cartilage, ranged from 0.0142/cm to 0.1457/cm. Three injections at the head/neck conjunction area yielded the highest iodine attenuation coefficients in cartilage. The femoral cartilage in the Superior-Medial compartment was significantly thicker than in the other 3 femoral compartments, and femoral cartilage in the Superior-Anterior compartment was significantly thinner than the other 3 femoral compartments. The acetabular cartilage in the Superior compartment was significantly thicker than that in the Superior-Posterior compartment. sCECT with CA4+ allows assessment of hip cartilage thickness with 0.1 mm isotropic voxel size, sufficient for evaluating cartilage pathology and biomechanics.

17.
Chem Commun (Camb) ; 55(74): 11067-11070, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453992

RESUMO

Efficient and versatile functionalization of poly(anhydride maleic-alt-isobutylene) (PIMA), with economical commercial reagents, results in the one-step/one-day production of a copper-free click chemistry-ready carboxybetaine-like coating for quantum dots (QDs). The QDs are bright and stable in aqueous media and easily grafted with DNA with >95% efficiency.


Assuntos
DNA de Cadeia Simples/química , Anidridos Maleicos/química , Polímeros/química , Pontos Quânticos/química , Química Click , Reação de Cicloadição , Ciclo-Octanos/química , DNA Complementar/química , DNA Complementar/genética , DNA de Cadeia Simples/genética , Histamina/química , Anidridos Maleicos/síntese química , Hibridização de Ácido Nucleico , Polímeros/síntese química
18.
Proc Natl Acad Sci U S A ; 116(25): 12183-12192, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160441

RESUMO

Arthrofibrosis is a prevalent condition affecting greater than 5% of the general population and leads to a painful decrease in joint range of motion (ROM) and loss of independence due to pathologic accumulation of periarticular scar tissue. Current treatment options are limited in effectiveness and do not address the underlying cause of the condition: accumulation of fibrotic collagenous tissue. Herein, the naturally occurring peptide hormone relaxin-2 is administered for the treatment of adhesive capsulitis (frozen shoulder) and to restore glenohumeral ROM in shoulder arthrofibrosis. Recombinant human relaxin-2 down-regulates type I collagen and α smooth muscle actin production and increases intracellular cAMP concentration in human fibroblast-like synoviocytes, consistent with a mechanism of extracellular matrix degradation and remodeling. Pharmacokinetic profiling of a bolus administration into the glenohumeral joint space reveals the brief systemic and intraarticular (IA) half-lives of relaxin-2: 0.96 h and 0.62 h, respectively. Furthermore, using an established, immobilization murine model of shoulder arthrofibrosis, multiple IA injections of human relaxin-2 significantly improve ROM, returning it to baseline measurements collected before limb immobilization. This is in contrast to single IA (sIA) or multiple i.v. (mIV) injections of relaxin-2 with which the ROM remains constrained. The histological hallmarks of contracture (e.g., fibrotic adhesions and reduced joint space) are absent in the animals treated with multiple IA injections of relaxin-2 compared with the untreated control and the sIA- and mIV-treated animals. As these findings show, local delivery of relaxin-2 is an innovative treatment of shoulder arthrofibrosis.

19.
Sci Transl Med ; 11(495)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167930

RESUMO

Large bone defects cannot form a callus and exhibit high complication rates even with the best treatment strategies available. Tissue engineering approaches often use scaffolds designed to match the properties of mature bone. However, natural fracture healing is most efficient when it recapitulates development, forming bone via a cartilage intermediate (endochondral ossification). Because mechanical forces are critical for proper endochondral bone development and fracture repair, we hypothesized that recapitulating developmental mechanical forces would be essential for large bone defect regeneration in rats. Here, we engineered mesenchymal condensations that mimic the cellular organization and lineage progression of the early limb bud in response to local transforming growth factor-ß1 presentation from incorporated gelatin microspheres. We then controlled mechanical loading in vivo by dynamically tuning fixator compliance. Mechanical loading enhanced mesenchymal condensation-induced endochondral bone formation in vivo, restoring functional bone properties when load initiation was delayed to week 4 after defect formation. Live cell transplantation produced zonal human cartilage and primary spongiosa mimetic of the native growth plate, whereas condensation devitalization before transplantation abrogated bone formation. Mechanical loading induced regeneration comparable to high-dose bone morphogenetic protein-2 delivery, but without heterotopic bone formation and with order-of-magnitude greater mechanosensitivity. In vitro, mechanical loading promoted chondrogenesis and up-regulated pericellular matrix deposition and angiogenic gene expression. In vivo, mechanical loading regulated cartilage formation and neovascular invasion, dependent on load timing. This study establishes mechanical cues as key regulators of endochondral bone defect regeneration and provides a paradigm for recapitulating developmental programs for tissue engineering.

20.
Sci Rep ; 9(1): 7118, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068614

RESUMO

Early diagnosis of acute cartilage injuries enables monitoring of disease progression and improved treatment option planning to prevent post-traumatic osteoarthritis. In contrast-enhanced computed tomography (CECT), the changes in cationic agent diffusion within the tissue reflect cartilage degeneration. The diffusion in degenerated cartilage depends on proteoglycan (PG) content and water content, but each having an opposite effect on diffusion, thus compromising the diagnostic sensitivity. To overcome this limitation, we propose the simultaneous imaging of cationic (sensitive to PG and water contents) and non-ionic (sensitive to water content) agents. In this study, quantitative dual-energy CT (QDECT) imaging of two agents is reported for the first time at clinically feasible imaging time points. Furthermore, this is the first time synchrotron microCT with monochromatic X-rays is employed in cartilage CECT. Imaging was conducted at 1 and 2 h post contrast agent immersion. Intact, PG-depleted, and mechanically injured + PG-depleted cartilage samples (n = 33) were imaged in a mixture of cationic (iodine-based CA4+) and non-ionic (gadolinium-based gadoteridol) agents. Concurrent evaluation of CA4+ and gadoteridol partitions in cartilage is accomplished using QDECT. Subsequent normalization of the CA4+ partition with that of the gadoteridol affords CA4+ attenuations that significantly correlate with PG content - a key marker of OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA