Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Cancers (Basel) ; 13(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808193

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease, characterized by common and rare driver gene alterations that provide a selective growth advantage for progressing tumour cells. We hypothesized that the number of distinct gene driver alteration-affected pathways or gene classes was associated with poor prognosis in patients initiating androgen receptor signalling inhibitors (ARSi). We performed a post hoc analysis of an amalgamated baseline circulating tumour DNA (ctDNA) mutational landscape dataset of ARSi-treated men with mCRPC (n = 342). We associated the detected hotspot, pathogenic, and/or high impact protein function-affecting perturbations in 39 genes into 13 pathways. Progression-free (PFS) and overall survival (OS) were analysed using Kaplan-Meier curves and multivariate Cox regression models. Driver gene alterations were detected in 192/342 (56.1%) evaluable patients. An increased number of affected pathways, coined pathway complexity index (PCI), resulted in a decremental PFS and OS, and was independently associated with prognosis once ≥3 pathway or gene classes were affected (PFS HR (95%CI): 1.7 (1.02-2.84), p = 0.04, and OS HR (95%CI): 2.5 (1.06-5.71), p = 0.04). Additionally, visceral disease and baseline PSA and plasma ctDNA levels were independently associated with poor prognosis. Elevated PCI is associated with poor ARSi outcome and supports comprehensive genomic profiling to better infer mCRPC prognosis.

2.
Nat Commun ; 12(1): 1236, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623038

RESUMO

Genetic models for cancer have been evaluated using almost exclusively European data, which could exacerbate health disparities. A polygenic hazard score (PHS1) is associated with age at prostate cancer diagnosis and improves screening accuracy in Europeans. Here, we evaluate performance of PHS2 (PHS1, adapted for OncoArray) in a multi-ethnic dataset of 80,491 men (49,916 cases, 30,575 controls). PHS2 is associated with age at diagnosis of any and aggressive (Gleason score ≥ 7, stage T3-T4, PSA ≥ 10 ng/mL, or nodal/distant metastasis) cancer and prostate-cancer-specific death. Associations with cancer are significant within European (n = 71,856), Asian (n = 2,382), and African (n = 6,253) genetic ancestries (p < 10-180). Comparing the 80th/20th PHS2 percentiles, hazard ratios for prostate cancer, aggressive cancer, and prostate-cancer-specific death are 5.32, 5.88, and 5.68, respectively. Within European, Asian, and African ancestries, hazard ratios for prostate cancer are: 5.54, 4.49, and 2.54, respectively. PHS2 risk-stratifies men for any, aggressive, and fatal prostate cancer in a multi-ethnic dataset.


Assuntos
Grupos Étnicos/genética , Herança Multifatorial/genética , Neoplasias da Próstata/genética , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Autorrelato
3.
Blood Adv ; 5(4): 1003-1016, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33591326

RESUMO

Although copy number alterations (CNAs) and translocations constitute the backbone of the diagnosis and prognostication of acute myeloid leukemia (AML), techniques used for their assessment in routine diagnostics have not been reconsidered for decades. We used a combination of 2 next-generation sequencing-based techniques to challenge the currently recommended conventional cytogenetic analysis (CCA), comparing the approaches in a series of 281 intensively treated patients with AML. Shallow whole-genome sequencing (sWGS) outperformed CCA in detecting European Leukemia Net (ELN)-defining CNAs and showed that CCA overestimated monosomies and suboptimally reported karyotype complexity. Still, the concordance between CCA and sWGS for all ELN CNA-related criteria was 94%. Moreover, using in silico dilution, we showed that 1 million reads per patient would be enough to accurately assess ELN-defining CNAs. Total genomic loss, defined as a total loss ≥200 Mb by sWGS, was found to be a better marker for genetic complexity and poor prognosis compared with the CCA-based definition of complex karyotype. For fusion detection, the concordance between CCA and whole-transcriptome sequencing (WTS) was 99%. WTS had better sensitivity in identifying inv(16) and KMT2A rearrangements while showing limitations in detecting lowly expressed PML-RARA fusions. Ligation-dependent reverse transcription polymerase chain reaction was used for validation and was shown to be a fast and reliable method for fusion detection. We conclude that a next-generation sequencing-based approach can replace conventional CCA for karyotyping, provided that efforts are made to cover lowly expressed fusion transcripts.

4.
Artigo em Inglês | MEDLINE | ID: mdl-33420416

RESUMO

BACKGROUND: Polygenic hazard scores (PHS) can identify individuals with increased risk of prostate cancer. We estimated the benefit of additional SNPs on performance of a previously validated PHS (PHS46). MATERIALS AND METHOD: 180 SNPs, shown to be previously associated with prostate cancer, were used to develop a PHS model in men with European ancestry. A machine-learning approach, LASSO-regularized Cox regression, was used to select SNPs and to estimate their coefficients in the training set (75,596 men). Performance of the resulting model was evaluated in the testing/validation set (6,411 men) with two metrics: (1) hazard ratios (HRs) and (2) positive predictive value (PPV) of prostate-specific antigen (PSA) testing. HRs were estimated between individuals with PHS in the top 5% to those in the middle 40% (HR95/50), top 20% to bottom 20% (HR80/20), and bottom 20% to middle 40% (HR20/50). PPV was calculated for the top 20% (PPV80) and top 5% (PPV95) of PHS as the fraction of individuals with elevated PSA that were diagnosed with clinically significant prostate cancer on biopsy. RESULTS: 166 SNPs had non-zero coefficients in the Cox model (PHS166). All HR metrics showed significant improvements for PHS166 compared to PHS46: HR95/50 increased from 3.72 to 5.09, HR80/20 increased from 6.12 to 9.45, and HR20/50 decreased from 0.41 to 0.34. By contrast, no significant differences were observed in PPV of PSA testing for clinically significant prostate cancer. CONCLUSIONS: Incorporating 120 additional SNPs (PHS166 vs PHS46) significantly improved HRs for prostate cancer, while PPV of PSA testing remained the same.

5.
Eur Urol Oncol ; 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33436325

RESUMO

BACKGROUND: Germline ATM mutations are suggested to contribute to predisposition to prostate cancer (PrCa). Previous studies have had inadequate power to estimate variant effect sizes. OBJECTIVE: To precisely estimate the contribution of germline ATM mutations to PrCa risk. DESIGN, SETTING, AND PARTICIPANTS: We analysed next-generation sequencing data from 13 PRACTICAL study groups comprising 5560 cases and 3353 controls of European ancestry. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Variant Call Format files were harmonised, annotated for rare ATM variants, and classified as tier 1 (likely pathogenic) or tier 2 (potentially deleterious). Associations with overall PrCa risk and clinical subtypes were estimated. RESULTS AND LIMITATIONS: PrCa risk was higher in carriers of a tier 1 germline ATM variant, with an overall odds ratio (OR) of 4.4 (95% confidence interval [CI]: 2.0-9.5). There was also evidence that PrCa cases with younger age at diagnosis (<65 yr) had elevated tier 1 variant frequencies (pdifference = 0.04). Tier 2 variants were also associated with PrCa risk, with an OR of 1.4 (95% CI: 1.1-1.7). CONCLUSIONS: Carriers of pathogenic ATM variants have an elevated risk of developing PrCa and are at an increased risk for earlier-onset disease presentation. These results provide information for counselling of men and their families. PATIENT SUMMARY: In this study, we estimated that men who inherit a likely pathogenic mutation in the ATM gene had an approximately a fourfold risk of developing prostate cancer. In addition, they are likely to develop the disease earlier.

6.
Artigo em Inglês | MEDLINE | ID: mdl-33168965

RESUMO

BACKGROUND: The validated Stockholm3 test is used to improve PC detection. Stockholm3, however, was developed using systematic biopsies. We aimed to assess Stockholm3 operating performance when using MRI-targeted biopsies for PC detection. METHODS: A prospective cohort of 532 men was considered for prostate biopsy during 2016-2017. All men underwent Stockholm3 testing and MRI before biopsy. All PIRADs ≥3 lesion underwent targeted biopsy; all men underwent systematic biopsy. The primary outcome was ISUP Grade Group ≥2 (GG ≥ 2) PC. Detection strategies included: (1) systematic biopsies alone, (2) targeted biopsies alone, (3) targeted with associated systematic biopsies for MRI+, and (4) all biopsies in all men. For each strategy, the Stockholm3 operating characteristics were assessed with discrimination, calibration, and decision curve analysis (DCA). RESULTS: Median age was 65 years, median PSA was 6.2 ng/mL, median Stockholm3 score was 16.5%, and overall detection of GG ≥ 2 PC was 36% (193/532). Stockholm3 showed accurate discrimination for separating GG ≥ 2 cancer from benign and GG1, with an area under the curve of 0.84-0.86 depending on the biopsy strategy. Calibration analysis showed that Stockholm3 underestimated risks for GG ≥ 2 PC risk using MRI-targeted biopsies: there was a net benefit over biopsies in all men for Stockholm3 at risk thresholds varying from >3% in systematic biopsies to >15% in targeted with systematic biopsies in MRI+ men. When using a Stockholm3 score of >10% cutoff, a range of 32-38% of biopsies could be avoided while missing 5-11% of GG ≥ 2 PC and 0-3% of GG ≥ 3 PC. CONCLUSIONS: Stockholm3 shows high discriminatory performance in an MRI-targeted biopsy setting, however risks are underpredicted due to MRI-targeted biopsies being more sensitive than the systematic biopsies for which Stockholm3 was developed. Stockholm3, along with any risk prediction model developed for systematic prostate biopsy decisions, will need recalibration for optimal use in an MRI-driven biopsy setting.

7.
Cancers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158149

RESUMO

The identification of recurrent founder variants in cancer predisposing genes may have important implications for implementing cost-effective targeted genetic screening strategies. In this study, we evaluated the prevalence and relative risk of the CHEK2 recurrent variant c.349A>G in a series of 462 Portuguese patients with early-onset and/or familial/hereditary prostate cancer (PrCa), as well as in the large multicentre PRACTICAL case-control study comprising 55,162 prostate cancer cases and 36,147 controls. Additionally, we investigated the potential shared ancestry of the carriers by performing identity-by-descent, haplotype and age estimation analyses using high-density SNP data from 70 variant carriers belonging to 11 different populations included in the PRACTICAL consortium. The CHEK2 missense variant c.349A>G was found significantly associated with an increased risk for PrCa (OR 1.9; 95% CI: 1.1-3.2). A shared haplotype flanking the variant in all carriers was identified, strongly suggesting a common founder of European origin. Additionally, using two independent statistical algorithms, implemented by DMLE+2.3 and ESTIAGE, we were able to estimate the age of the variant between 2300 and 3125 years. By extending the haplotype analysis to 14 additional carrier families, a shared core haplotype was revealed among all carriers matching the conserved region previously identified in the high-density SNP analysis. These findings are consistent with CHEK2 c.349A>G being a founder variant associated with increased PrCa risk, suggesting its potential usefulness for cost-effective targeted genetic screening in PrCa families.

8.
J Natl Cancer Inst ; 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32866231

RESUMO

BACKGROUND: Active surveillance (AS) for men with low-risk prostate cancer (PC) can lead to patient morbidity and healthcare overutilization. The aim of this study was to evaluate an AS-protocol using the Stockholm3 test and MRI to reduce biopsy intensity. METHODS: We conducted a prospective multicenter study of 280 invited men from a contemporary screening study (STHLM3), with Gleason Score (GS) 3 + 3 PC on a current AS-protocol. Patients underwent prostate-MRI and blood sampling for analysis of the Stockholm3 test including protein biomarkers, genetic variants and clinical variables to predict risk of GS ≥ 3 + 4 PC, then followed by systematic biopsies and targeted biopsies (for PIRADS ≥3 lesions) in all men. Primary outcomes were reclassification to GS ≥ 3 + 4 PC and clinically significant PC (csPC) including unfavorable intermediate risk PC or higher based on NCCN-guidelines. RESULTS: Adding MRI-targeted biopsies to systematic biopsies increased sensitivity of GS ≥ 3 + 4 PC compared to systematic biopsies alone (relative sensitivity (RS) = 1.52; 95% CI = 1.28 to 1.85). Performing biopsies in only MRI positive increased sensitivity of GS ≥ 3 + 4 PC (RS = 1.30; 95% CI = 1.04 to 1.67), reduced number of biopsy procedures by 49.3% while missing 7.2% GS ≥ 3 + 4 PC and 1.4% csPCa. Excluding men with negative Stockholm3 test reduced number of MRI investigations at follow-up by 22.5%, biopsies by 56.8% while missing 6.9% GS ≥ 3 + 4 PC and 1.3% csPCa. CONCLUSION: During AS, including MRI and targeted/systematic biopsies increase sensitivity of PC reclassification. Incorporation of risk prediction models including biomarkers may reduce the need for MRI use in men with low risk PC.

10.
World J Urol ; 2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32734463

RESUMO

PURPOSE: To evaluate clinical variables, including magnetic resonance imaging (MRI) predictive of adverse pathology (AP) at radical prostatectomy (RP) in men initially enrolled in active surveillance (AS). METHODS: A population-based cohort study of men diagnosed with low-risk prostate cancer (PCa), in Stockholm County, Sweden, during 2008-2017 enrolled in AS their intended primary treatment followed by RP. AP was defined as ISUP grade group ≥ 3 and/or pT-stage ≥ T3. Association between clinical variables at diagnosis and time to AP was evaluated using Cox regression and multivariate logistic regression to evaluate the association between AP and clinical variables at last biopsy before RP. RESULTS: In a cohort of 6021 patients with low-risk PCa, 3116 were selected for AS and 216 underwent RP. Follow-up was 10 years, with a median time on AS of 23 months. 37.7% of patients had AP at RP. Clinical T-stage [Hazard ratio (HR): 1.81, 95% confidence interval (CI) 1.04-3.18] and PSA (HR: 1.31, 95% CI 1.17-1.46) at diagnosis and age [Odds Ratio (OR): 1.09, 95% CI 1.02-1.18), PSA (OR: 1.22, 95% CI 1.07-1.41), and PI-RADS (OR 1.66, 95% CI 1.11-2.55)] at last re-biopsy were significantly associated with AP. CONCLUSION: PI-RADS score is significantly associated with AP at RP and support current guidelines recommending MRI before enrollment in AS. Furthermore, age, cT-stage, and PSA are significantly associated with AP.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32641739

RESUMO

BACKGROUND: The Stockholm3 test improves Gleason Grade Group ≥2 (GG ≥ 2) prostate cancer (PC) detection, however it has not been evaluated in an American cohort where clinical practice patterns and ethnicity differ. We aimed to identify subgroups within a Stockholm population with PC risk profiles matching American ethnicity-specific subgroups and compare the detection of PC and describe Stockholm3 performance within these subgroups. METHODS: All men age 49-70 years presenting for prostate biopsies were evaluated at UIC from 2016 to 2019, as well as men in Stockholm from 2012 to 2014 in the STHLM3 study. Propensity scores (PS) were estimated for each person using logistic regression for age, PSA, prostate volume, family history of PC, 5-alpha reductase inhibitor use, and prior biopsy. 3:1 PS matching was performed for Stockholm to Chicago ethnicity-specific cohorts and odds ratios (OR) were computed to compare detection of GG ≥ 2 PC between groups. RESULTS: 504 Chicago men and 6980 Stockholm men were included. In African American (AA) men, 51% had GG ≥ 2 PC detected, while in risk-matched Stockholm men, 34% had GG ≥ 2 PC detected (OR: 2.1, p < 0.001). There was no statistical difference in GG ≥ 2 PC detected when matching Stockholm men to non-Hispanic Caucasian men (31% vs. 24%, OR: 0.7, p = 0.30) or Hispanic Caucasian men (31% vs. 27%, OR: 1.2, p = 0.42). The AUC for the Stockholm3 test of the matched Stockholm cohorts for AA, non-Hispanic Caucasian, and Hispanic Caucasian men was 0.85, 0.89, and 0.90, respectively. CONCLUSIONS: Using statistical techniques to simulate a multi-ethnic Chicago cohort within the STHLM3 population, we found an excess risk of GG ≥ 2 PC among AA men. Our hypothesis that the Stockholm3 may have good predictive value in a multiethnic cohort is strengthened, and that recalibration to at least AA men seems likely to be needed to obtain well-calibrated predictions.

12.
Cancer Epidemiol Biomarkers Prev ; 29(9): 1731-1738, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32581112

RESUMO

BACKGROUND: A polygenic hazard score (PHS), the weighted sum of 54 SNP genotypes, was previously validated for association with clinically significant prostate cancer and for improved prostate cancer screening accuracy. Here, we assess the potential impact of PHS-informed screening. METHODS: United Kingdom population incidence data (Cancer Research United Kingdom) and data from the Cluster Randomized Trial of PSA Testing for Prostate Cancer were combined to estimate age-specific clinically significant prostate cancer incidence (Gleason score ≥7, stage T3-T4, PSA ≥10, or nodal/distant metastases). Using HRs estimated from the ProtecT prostate cancer trial, age-specific incidence rates were calculated for various PHS risk percentiles. Risk-equivalent age, when someone with a given PHS percentile has prostate cancer risk equivalent to an average 50-year-old man (50-year-standard risk), was derived from PHS and incidence data. Positive predictive value (PPV) of PSA testing for clinically significant prostate cancer was calculated using PHS-adjusted age groups. RESULTS: The expected age at diagnosis of clinically significant prostate cancer differs by 19 years between the 1st and 99th PHS percentiles: men with PHS in the 1st and 99th percentiles reach the 50-year-standard risk level at ages 60 and 41, respectively. PPV of PSA was higher for men with higher PHS-adjusted age. CONCLUSIONS: PHS provides individualized estimates of risk-equivalent age for clinically significant prostate cancer. Screening initiation could be adjusted by a man's PHS. IMPACT: Personalized genetic risk assessments could inform prostate cancer screening decisions.

13.
Trials ; 21(1): 579, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586393

RESUMO

BACKGROUND: Multiple therapies exist for patients with metastatic castration-resistant prostate cancer (mCRPC). However, their improvement on progression-free survival (PFS) remains modest, potentially explained by tumor molecular heterogeneity. Several prognostic molecular biomarkers have been identified for mCRPC that may have predictive potential to guide treatment selection and prolong PFS. We designed a platform trial to test this hypothesis. METHODS: The Prostate-Biomarker (ProBio) study is a multi-center, outcome-adaptive, multi-arm, biomarker-driven platform trial for tailoring treatment decisions for men with mCRPC. Treatment decisions in the experimental arms are based on biomarker signatures defined as mutations in certain genes/pathways suggested in the scientific literature to be important for treatment response in mCRPC. The biomarker signatures are determined by targeted sequencing of circulating tumor and germline DNA using a panel specifically designed for mCRPC. DISCUSSION: Patients are stratified based on the sequencing results and randomized to either current clinical practice (control), where the treating physician decides treatment, or to molecularly driven treatment selection based on the biomarker profile. Outcome-adaptive randomization is implemented to early identify promising treatments for a biomarker signature. Biomarker signature-treatment combinations graduate from the platform when they demonstrate 85% probability of improving PFS compared to the control arm. Graduated combinations are further evaluated in a seamless confirmatory trial with fixed randomization. The platform design allows for new drugs and biomarkers to be introduced in the study. CONCLUSIONS: The ProBio design allows promising treatment-biomarker combinations to quickly graduate from the platform and be confirmed for rapid implementation in clinical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03903835. Date of registration: April 4, 2019. Status: Recruiting.

14.
Eur J Hum Genet ; 28(10): 1467-1475, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32514134

RESUMO

We determined the effect of sample size on performance of polygenic hazard score (PHS) models in prostate cancer. Age and genotypes were obtained for 40,861 men from the PRACTICAL consortium. The dataset included 201,590 SNPs per subject, and was split into training and testing sets. Established-SNP models considered 65 SNPs that had been previously associated with prostate cancer. Discovery-SNP models used stepwise selection to identify new SNPs. The performance of each PHS model was calculated for random sizes of the training set. The performance of a representative Established-SNP model was estimated for random sizes of the testing set. Mean HR98/50 (hazard ratio of top 2% to average in test set) of the Established-SNP model increased from 1.73 [95% CI: 1.69-1.77] to 2.41 [2.40-2.43] when the number of training samples was increased from 1 thousand to 30 thousand. Corresponding HR98/50 of the Discovery-SNP model increased from 1.05 [0.93-1.18] to 2.19 [2.16-2.23]. HR98/50 of a representative Established-SNP model using testing set sample sizes of 0.6 thousand and 6 thousand observations were 1.78 [1.70-1.85] and 1.73 [1.71-1.76], respectively. We estimate that a study population of 20 thousand men is required to develop Discovery-SNP PHS models while 10 thousand men should be sufficient for Established-SNP models.

15.
Blood Cancer J ; 10(6): 67, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527994

RESUMO

Relevant molecular tools for treatment stratification of patients ≥65 years with acute myeloid leukemia (AML) are lacking. We combined clinical data with targeted DNA- and full RNA-sequencing of 182 intensively and palliatively treated patients to predict complete remission (CR) and survival in AML patients ≥65 years. Intensively treated patients with NPM1 and IDH2R172 mutations had longer overall survival (OS), whereas mutated TP53 conferred lower CR rates and shorter OS. FLT3-ITD and TP53 mutations predicted worse OS in palliatively treated patients. Gene expression levels most predictive of CR were combined with somatic mutations for an integrated risk stratification that we externally validated using the beatAML cohort. We defined a high-risk group with a CR rate of 20% in patients with mutated TP53, compared to 97% CR in low-risk patients defined by high expression of ZBTB7A and EEPD1 without TP53 mutations. Patients without these criteria had a CR rate of 54% (intermediate risk). The difference in CR rates translated into significant OS differences that outperformed ELN stratification for OS prediction. The results suggest that an integrated molecular risk stratification can improve prediction of CR and OS and could be used to guide treatment in elderly AML patients.

16.
BMC Health Serv Res ; 20(1): 448, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32434566

RESUMO

BACKGROUND: Incidence and prevalence of prostate cancer in Sweden have increased markedly due to prostate-specific antigen (PSA) testing. Moreover, new diagnostic tests and treatment technologies are expected to further increase the overall costs. Our aims were (i) to estimate the societal costs for existing testing, diagnosis, management and treatment of prostate cancer, and (ii) to provide reference values for future cost-effectiveness analyses of prostate cancer screening and treatment. METHODS: Taking a societal perspective, this study aimed to investigate the annual cost of prostate cancer in Sweden using a prevalence-based cost-of-illness approach. Resource utilisation and related costs within Stockholm Region during 2016 were quantified using data from the Stockholm PSA and Biopsy Register and other health and population registers. Costs included: (i) direct medical costs for health care utilisation at primary care, hospitals, palliative care and prescribed drugs; (ii) informal care; and (iii) indirect costs due to morbidity and premature mortality. The resource utilisation was valued using unit costs for direct medical costs and the human capital method for informal care and indirect costs. Costs for the Stockholm region were extrapolated to Sweden based on cancer prevalence and the average costs by age and resource type. RESULTS: The societal costs due to prostate cancer in Stockholm in 2016 were estimated to be €64 million Euro (€Mn), of which the direct medical costs, informal care and productivity losses represented 62, 28 and 10% of the total costs, respectively. The total annual costs extrapolated to Sweden were calculated to be €281 Mn. The average direct medical cost, average costs for informal care and productivity losses per prevalent case were €1510, €828 and €271, respectively. These estimates were sensitive to assumptions related to the proportion of primary care visits associated with PSA testing and the valuation method for informal care. CONCLUSION: The societal costs due to prostate cancer were substantial and constitute a considerable burden to Swedish society. Data from this study are relevant for future cost-effectiveness evaluations of prostate cancer screening and treatment.

17.
J Clin Pathol ; 73(10): 630-635, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32034057

RESUMO

AIMS: Despite being one of the major pathways for the spread of malignant tumours, perineural invasion (PNI) has not conclusively been shown to have an independent prognostic value for prostate cancer. Prostatic biopsy constitutes the major pathology workload in prostate cancer and is the foundation for primary treatment decisions and for this reason we aimed to estimate the prognostic value of PNI in biopsies. METHODS: We followed 918 men who underwent radical prostatectomy (RP) from the prospective and population based STHLM3 study until biochemical recurrence with a median follow-up of 4.1 years. To strengthen the evidence, we combined the estimates from the largest studies targeting the prognostic value of PNI in the biopsy. We also estimated the OR of advanced stage as radical prostatectomy for PNI positive and negative men. RESULTS: The estimated prognostic value based on our data suggested an approximately 50% increased risk of biochemical recurrence if PNI was present in the biopsy (p=0.06). Even though not statistically significant on the 5% level, this estimate is consistent with similar studies, and by combining the estimates there is in fact strong evidence in support of an independent prognostic value of PNI in the biopsy (p<0.0001). There was also an independent increased risk of advanced stage at RP for positive men (OR 1.85, p=0.005). CONCLUSIONS: The evidence supporting a clinically relevant and independent prognostic value of PNI is strong enough to be considered for pathology reporting guidelines.


Assuntos
Invasividade Neoplásica/patologia , Nervos Periféricos/patologia , Neoplasias da Próstata/patologia , Idoso , Biópsia por Agulha , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Prostatectomia
18.
Lancet Oncol ; 21(2): 222-232, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31926806

RESUMO

BACKGROUND: An increasing volume of prostate biopsies and a worldwide shortage of urological pathologists puts a strain on pathology departments. Additionally, the high intra-observer and inter-observer variability in grading can result in overtreatment and undertreatment of prostate cancer. To alleviate these problems, we aimed to develop an artificial intelligence (AI) system with clinically acceptable accuracy for prostate cancer detection, localisation, and Gleason grading. METHODS: We digitised 6682 slides from needle core biopsies from 976 randomly selected participants aged 50-69 in the Swedish prospective and population-based STHLM3 diagnostic study done between May 28, 2012, and Dec 30, 2014 (ISRCTN84445406), and another 271 from 93 men from outside the study. The resulting images were used to train deep neural networks for assessment of prostate biopsies. The networks were evaluated by predicting the presence, extent, and Gleason grade of malignant tissue for an independent test dataset comprising 1631 biopsies from 246 men from STHLM3 and an external validation dataset of 330 biopsies from 73 men. We also evaluated grading performance on 87 biopsies individually graded by 23 experienced urological pathologists from the International Society of Urological Pathology. We assessed discriminatory performance by receiver operating characteristics and tumour extent predictions by correlating predicted cancer length against measurements by the reporting pathologist. We quantified the concordance between grades assigned by the AI system and the expert urological pathologists using Cohen's kappa. FINDINGS: The AI achieved an area under the receiver operating characteristics curve of 0·997 (95% CI 0·994-0·999) for distinguishing between benign (n=910) and malignant (n=721) biopsy cores on the independent test dataset and 0·986 (0·972-0·996) on the external validation dataset (benign n=108, malignant n=222). The correlation between cancer length predicted by the AI and assigned by the reporting pathologist was 0·96 (95% CI 0·95-0·97) for the independent test dataset and 0·87 (0·84-0·90) for the external validation dataset. For assigning Gleason grades, the AI achieved a mean pairwise kappa of 0·62, which was within the range of the corresponding values for the expert pathologists (0·60-0·73). INTERPRETATION: An AI system can be trained to detect and grade cancer in prostate needle biopsy samples at a ranking comparable to that of international experts in prostate pathology. Clinical application could reduce pathology workload by reducing the assessment of benign biopsies and by automating the task of measuring cancer length in positive biopsy cores. An AI system with expert-level grading performance might contribute a second opinion, aid in standardising grading, and provide pathology expertise in parts of the world where it does not exist. FUNDING: Swedish Research Council, Swedish Cancer Society, Swedish eScience Research Center, EIT Health.


Assuntos
Inteligência Artificial , Diagnóstico por Computador , Interpretação de Imagem Assistida por Computador , Gradação de Tumores , Neoplasias da Próstata/patologia , Idoso , Biópsia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Suécia
19.
Scand J Urol ; 54(1): 1-6, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31876229

RESUMO

Background: There is conflicting evidence about the association between prostate cancer and Lower Urinary Tract Symptoms (LUTS). We aimed to describe the prevalence of LUTS and its association with prostate cancer risk.Methods: We studied the association between International Prostate Symptom Score (IPSS) and prostate cancer in a population-based sample of men (n = 45,595) aged 50-69 years from the Stockholm3 study. Men with PSA ≥3 ng/ml (n = 4579) underwent systematic prostate biopsies. We used the International Society of Urological Pathology Gleason Grading (ISUP grade) and performed regression analysis for risk of any cancer (n = 1797), ISUP grade ≥2 (n = 840) and advanced cancer, defined as ISUP grade ≥3 or cT ≥3 (n = 353).Results: 74.6% of all men had no or mild LUTS (IPSS ≤7) and 3.2% had severe LUTS (IPSS >19). Men with any, ISUP grade ≥2 or advanced cancer had lower median IPSS compared to men with benign biopsy (any cancer: 4 (IQR 2-9); ISUP grade ≥2: 4 (2-8); advanced cancer: 4 (2-8); benign biopsy: 6 (3-11); p < 0.05). IPSS was not associated with increased risk of cancer in multivariate analyses (OR (any cancer) 0.97; 95% CI 0.96-0.98; OR (ISUP grade ≥2) 0.97; 95% CI 0.96-0.99; OR (advanced cancer) 0.99; 95% CI 0.99-1.01).Conclusions: Three-quarters of men aged 50-69 years report no or mild LUTS. Our data do not support any clinically meaningful association between LUTS and prostate cancer. Specifically, men with advanced prostate cancer did not exhibit more urinary symptoms than men without cancer.

20.
Eur Urol Oncol ; 3(5): 640-647, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31235395

RESUMO

BACKGROUND: Active surveillance (AS) is increasingly utilized for low-risk prostate cancers, to delay or avoid treatment. OBJECTIVE: To (1) describe uptake and surveillance intensity of real-world use of AS and compare with national guidelines, and (2) describe transitions from conservative to curative treatment by different indications of disease progression. DESIGN, SETTING, AND PARTICIPANTS: A population-based cohort study of men diagnosed with low-risk prostate cancer, in Stockholm County, Sweden, during 2008-2017. Follow-up was up to 10yr, with a median of 3.5yr. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Poisson regression was used to estimate incidence rate ratios of prostate-specific antigen (PSA) testing and biopsies. Cox regression was used to estimate hazard ratios of starting curative treatment. RESULTS AND LIMITATIONS: A total of 6021 men with low-risk prostate cancer were included in the analysis; 3116 (52%) had AS recorded as the intended primary management (AS cohort). During 1, 2, and 3yr after diagnosis, the frequencies of at least one PSA test were 90%, 92%, and 88%, respectively, and those of postdiagnostic surveillance biopsies were 42%, 19% and 18%, respectively. During surveillance, 13% of men in the AS cohort were upgraded on rebiopsy, with Gleason upgrading being the strongest factor for starting curative treatment. One limitation is the generalizability to other populations because of differences between surveillance protocols and clinical settings. CONCLUSIONS: Our results show that AS is underutilized and that monitoring differs from current guidelines. Optimization of AS protocols is important in order to increase adherence and avoid overtreatment. PATIENT SUMMARY: Active surveillance has the potential to reduce overtreatment and avoid treatment-related side effects. Our results show that few men receive the recommended monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...