Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 342
Filtrar
Filtros adicionais











País/Região como assunto
Intervalo de ano
1.
eNeuro ; 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31451606

RESUMO

The primary function of language is to communicate- that is, to make individuals reach a state of mutual understanding about a particular thought or idea. Accordingly, daily communication is truly a task of social coordination. Indeed, successful interactions require individuals to 1) track and adopt a partner's perspective, and 2) continuously shift between the numerous elements relevant to the exchange. Here, we use a referential communication task to study the contributions of perspective-taking and executive function to effective communication in non-aphasic human patients with behavioral variant frontotemporal dementia (bvFTD). Similar to previous work, the task was to identify a target object, embedded amongst an array of competitors, for an interlocutor. Results indicate that bvFTD patients are impaired relative to controls in selecting the optimal, precise response. Neuropsychological testing related this performance to mental set-shifting, but not to working memory or inhibition. Follow-up analyses indicated that some bvFTD patients perform equally well as controls, while a second, clinically-matched patient group performs significantly worse. Importantly, the neuropsychological profiles of these subgroups differed only in set-shifting. Finally, structural MRI imaging analyses related patient impairment to gray matter disease in orbitofrontal, medial prefrontal, and dorsolateral prefrontal cortex, all regions previously implicated in social cognition and overlapping those related to set-shifting. Complementary white matter analyses implicated uncinate fasciculus, which carries projections between orbitofrontal and temporal cortices. Taken together, these findings demonstrate that impaired referential communication in bvFTD is cognitively related to set-shifting, and anatomically related to a social-executive network including prefrontal cortices and uncinate fasciculus.Significance Statement While traditional models of language processing focus on single word and sentence comprehension, successful communication during conversational exchanges may involve additional executive resources and social perspective-taking. Here, we report a novel study of non-aphasic patients with behavioral variant frontotemporal dementia (bvFTD), who have documented deficits in social and executive function but relatively preserved language. Our findings demonstrate that patients with bvFTD have difficulty coordinating perspectives with a conversational partner in a referential communication task. Patient impairment was related to disease in a network of prefrontal regions associated with social functioning and mental set-shifting, highlighting the essential contribution of non-language brain regions to daily communication.

2.
Alzheimers Dement ; 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31272932

RESUMO

INTRODUCTION: Some models of therapy for neurodegenerative diseases envision starting treatment before symptoms develop. Demonstrating that such treatments are effective requires accurate knowledge of when symptoms would have started without treatment. Familial frontotemporal lobar degeneration offers a unique opportunity to develop predictors of symptom onset. METHODS: We created dementia risk scores in 268 familial frontotemporal lobar degeneration family members by entering covariate-adjusted standardized estimates of brain atrophy into a logistic regression to classify asymptomatic versus demented participants. The score's predictive value was tested in a separate group who were followed up longitudinally (stable vs. converted to dementia) using Cox proportional regressions with dementia risk score as the predictor. RESULTS: Cross-validated logistic regression achieved good separation of asymptomatic versus demented (accuracy = 90%, SE = 0.06). Atrophy scores predicted conversion from asymptomatic or mildly/questionably symptomatic to dementia (HR = 1.51, 95% CI: [1.16,1.98]). DISCUSSION: Individualized quantification of baseline brain atrophy is a promising predictor of progression in asymptomatic familial frontotemporal lobar degeneration mutation carriers.

4.
Brain ; 142(6): 1701-1722, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135048

RESUMO

Recent models of Alzheimer's disease progression propose that disease may be transmitted between brain areas either via local diffusion or long-distance transport via white matter fibre pathways. However, it is unclear whether such models are applicable in non-amnestic Alzheimer's disease, which is associated with domain-specific cognitive deficits and relatively spared episodic memory. To date, the anatomical progression of disease in non-amnestic patients remains understudied. We used longitudinal imaging to differentiate earlier atrophy and later disease spread in three non-amnestic variants, including logopenic-variant primary progressive aphasia (n = 25), posterior cortical atrophy (n = 20), and frontal-variant Alzheimer's disease (n = 12), as well as 17 amnestic Alzheimer's disease patients. Patients were compared to 37 matched controls. All patients had autopsy (n = 7) or CSF (n = 67) evidence of Alzheimer's disease pathology. We first assessed atrophy in suspected sites of disease origin, adjusting for age, sex, and severity of cognitive impairment; we then performed exploratory whole-brain analysis to investigate longitudinal disease spread both within and outside these regions. Additionally, we asked whether each phenotype exhibited more rapid change in its associated disease foci than other phenotypes. Finally, we investigated whether atrophy was related to structural brain connectivity. Each non-amnestic phenotype displayed unique patterns of initial atrophy and subsequent neocortical change that correlated with cognitive decline. Longitudinal atrophy included areas both proximal to and distant from sites of initial atrophy, suggesting heterogeneous mechanisms of disease spread. Moreover, regional rates of neocortical change differed by phenotype. Logopenic-variant patients exhibited greater initial atrophy and more rapid longitudinal change in left lateral temporal areas than other groups. Frontal-variant patients had pronounced atrophy in left insula and middle frontal gyrus, combined with more rapid atrophy of left insula than other non-amnestic patients. In the medial temporal lobes, non-amnestic patients had less atrophy at their initial scan than amnestic patients, but longitudinal rate of change did not differ between patient groups. Medial temporal sparing in non-amnestic Alzheimer's disease may thus be due in part to later onset of medial temporal degeneration than in amnestic patients rather than different rates of atrophy over time. Finally, the magnitude of longitudinal atrophy was predicted by structural connectivity, measured in terms of node degree; this result provides indirect support for the role of long-distance fibre pathways in the spread of neurodegenerative disease. 10.1093/brain/awz091_video1 awz091media1 6041544065001.

5.
J Neurol Neurosurg Psychiatry ; 90(9): 997-1004, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31123142

RESUMO

BACKGROUND: Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. METHODS: This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). RESULTS: CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. CONCLUSION: CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.

6.
Brain Lang ; 194: 46-57, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31075725

RESUMO

We examined longitudinal change in language expression during a semi-structured speech sample in 48 patients with primary progressive aphasia (PPA) or behavioral variant frontotemporal dementia (bvFTD) and related this to longitudinal neuroimaging of cortical thickness available in 25 of these patients. All patient groups declined significantly on measures of both speech fluency and grammar, although patients with nonfluent/agrammatic PPA (naPPA) declined to a greater extent than patients with the semantic variant, the logopenic variant, and bvFTD. These patient groups also declined on several neuropsychological measures, but there was no correlation between decline in speech expression and decline in neuropsychological performance. Longitudinal decline in grammaticality, assessed by the number of well-formed sentences produced, was associated with longitudinal progression of gray matter atrophy in left frontal operculum/insula and bilateral temporal cortex.

7.
Alzheimers Dement ; 2019 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-31088775

RESUMO

INTRODUCTION: Identifying clinical measures that track disease in the earliest stages of frontotemporal lobar degeneration (FTLD) is important for clinical trials. Familial FTLD provides a unique paradigm to study early FTLD. Executive dysfunction is a clinically relevant hallmark of FTLD and may be a marker of disease progression. METHODS: Ninety-three mutation carriers with no symptoms or minimal/questionable symptoms (MAPT, n = 31; GRN, n = 28; C9orf72, n = 34; Clinical Dementia Rating scale plus NACC FTLD Module < 1) and 78 noncarriers enrolled through Advancing Research and Treatment in Frontotemporal Lobar Degeneration/Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects studies completed the Executive Abilities: Measures and Instruments for Neurobehavioral Evaluation and Research (NIH-EXAMINER) and the UDS neuropsychological battery. Linear mixed-effects models were used to identify group differences in cognition at baseline and longitudinally. We examined associations between cognition, clinical functioning, and magnetic resonance imaging volumes. RESULTS: NIH-EXAMINER scores detected baseline and differences in slopes between carriers and noncarriers, even in carriers with a baseline Clinical Dementia Rating scale plus NACC FTLD Module = 0. NIH-EXAMINER declines were associated with worsening clinical symptoms and brain volume loss. DISCUSSION: The NIH-EXAMINER is sensitive to cognitive changes in presymptomatic familial FTLD and is a promising surrogate endpoint.

8.
Lancet Neurol ; 18(6): 549-558, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31122495

RESUMO

BACKGROUND: Progressive supranuclear palsy is a rare neurodegenerative disease associated with dysfunctional tau protein. BIIB092 is a humanised monoclonal antibody that binds to N-terminal tau and is thus being assessed as a potential novel treatment for progressive supranuclear palsy. We aimed to investigate the safety and tolerability of BIIB092 in individuals with progressive supranuclear palsy. METHODS: This 12-week, double-blind, randomised, placebo-controlled, multiple ascending dose, phase 1b trial was done at 13 outpatient sites in the USA. Participants aged 41-86 years with probable or possible progressive supranuclear palsy with a score of 20 or greater on the Mini-Mental State Examination (MMSE) were enrolled. Three BIIB092 dose escalation cohorts (150 mg, 700 mg, or 2100 mg; eight participants per cohort) were tested sequentially. For each dose cohort, the first two participants were randomly assigned by a computer-generated scheme to receive either BIIB092 or placebo intravenously every 4 weeks for 57 days. After 2 days, the six remaining participants in each cohort were randomly assigned (5:1) to receive BIIB092 or placebo for 57 days. An additional expansion panel of 24 patients was randomly assigned (3:1) to receive 2100 mg or placebo every 4 weeks for 57 days. All participants were followed up to day 85. The primary outcome was safety, which was analysed in the treated population (all enrolled participants who received at least one dose of the study drug). This trial is registered with ClinicalTrials.gov, NCT02460094. FINDINGS: Between Oct 2, 2015, and Oct 19, 2016, 48 participants were enrolled and randomly assigned to the BIIB092 (n=36) and placebo (n=12) groups. No apparent demographic differences were observed between the two groups at baseline. All 48 participants completed the treatment phase of the study. Adverse events were generally mild to moderate in severity; the most common in the placebo and BIIB092 groups were falls (in two [17%] of 12 patients and in ten [28%] of 36 patients), urinary tract infections (in one [8%] of 12 and in six [17%] of 36), contusions (in one [8%] of 12 and in five [14%] of 36), and headaches (in none and in five [14%] of 36). Four serious adverse events resulting in admission to hospital were reported in three participants who received BIIB092 2100 mg: two severe adverse events of urinary tract infection, one severe adverse event of change in mental status, and one moderate adverse event of aspiration pneumonia. None was considered to be related to the study drug, all were resolved, and no deaths were reported. INTERPRETATION: Repeated administration of the anti-tau monoclonal antibody BIIB092, at doses of up to 2100 mg, appears to be well tolerated in participants with progressive supranuclear palsy. Results of this phase 1b trial have informed the design of the ongoing phase 2 PASSPORT (NCT03068468) study to examine the efficacy and safety of BIIB092. FUNDING: Bristol-Myers Squibb, Biogen.

9.
Ann Neurol ; 85(6): 801-811, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30973966

RESUMO

OBJECTIVE: Common variants near TMEM106B associate with risk of developing frontotemporal dementia (FTD). Emerging evidence suggests a role for TMEM106B in neurodegenerative processes beyond FTD. We evaluate the effect of TMEM106B genotype on cognitive decline across multiple neurogenerative diseases. METHODS: We longitudinally followed 870 subjects with diagnoses of Parkinson disease (PD; n = 179), FTD (n = 179), Alzheimer disease (AD; n = 300), memory-predominant mild cognitive impairment (MCI; n = 75), or neurologically normal control subjects (NC; n = 137) at the University of Pennsylvania (UPenn). All participants had annual Mini-Mental State Examination (MMSE; median follow-up duration = 3.0 years) and were genotyped at TMEM106B index single nucleotide polymorphism rs1990622. Genotype effects on cognition were confirmed by extending analyses to additional cognitive instruments (Mattis Dementia Rating Scale-2 [DRS-2] and Montreal Cognitive Assessment [MoCA]) and to an international validation cohort (Parkinson's Progression Markers Initiative [PPMI], N = 371). RESULTS: The TMEM106B rs1990622T allele, linked to increased risk of FTD, associated with greater MMSE decline over time in PD subjects but not in AD or MCI subjects. For FTD subjects, rs1990622T associated with more rapid decrease in MMSE only under the minor-allele, rs1990622C , dominant model. Among PD patients, rs1990622T carriers from the UPenn cohort demonstrated more rapid longitudinal decline in DRS-2 scores. Finally, in the PPMI cohort, TMEM106B risk allele carriers demonstrated more rapid longitudinal decline in MoCA scores. INTERPRETATION: Irrespective of cognitive instrument or cohort assessed, TMEM106B acts as a genetic modifier for cognitive trajectory in PD. Our results implicate lysosomal dysfunction in the pathogenesis of cognitive decline in 2 different proteinopathies. ANN NEUROL 2019;85:801-811.

10.
Ann Clin Transl Neurol ; 6(4): 698-707, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31019994

RESUMO

Objective: To identify novel CSF biomarkers in GRN-associated frontotemporal dementia (FTD) by proteomics using mass spectrometry (MS). Methods: Unbiased MS was applied to CSF samples from 19 presymptomatic and 9 symptomatic GRN mutation carriers and 24 noncarriers. Protein abundances were compared between these groups. Proteins were then selected for validation if identified by ≥4 peptides and if fold change was ≤0.5 or ≥2.0. Validation and absolute quantification by parallel reaction monitoring (PRM), a high-resolution targeted MS method, was performed on an international cohort (n = 210) of presymptomatic and symptomatic GRN, C9orf72 and MAPT mutation carriers. Results: Unbiased MS revealed 20 differentially abundant proteins between symptomatic mutation carriers and noncarriers and nine between symptomatic and presymptomatic carriers. Seven of these proteins fulfilled our criteria for validation. PRM analyses revealed that symptomatic GRN mutation carriers had significantly lower levels of neuronal pentraxin receptor (NPTXR), receptor-type tyrosine-protein phosphatase N2 (PTPRN2), neurosecretory protein VGF, chromogranin-A (CHGA), and V-set and transmembrane domain-containing protein 2B (VSTM2B) than presymptomatic carriers and noncarriers. Symptomatic C9orf72 mutation carriers had lower levels of NPTXR, PTPRN2, CHGA, and VSTM2B than noncarriers, while symptomatic MAPT mutation carriers had lower levels of NPTXR and CHGA than noncarriers. Interpretation: We identified and validated five novel CSF biomarkers in GRN-associated FTD. Our results show that synaptic, secretory vesicle, and inflammatory proteins are dysregulated in the symptomatic stage and may provide new insights into the pathophysiology of genetic FTD. Further validation is needed to investigate their clinical applicability as diagnostic or monitoring biomarkers.

11.
Ann Neurol ; 85(5): 630-643, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851133

RESUMO

OBJECTIVE: To measure postmortem burden of frontotemporal lobar degeneration (FTLD) with TDP-43 (FTLD-TDP) or tau (FTLD-Tau) proteinopathy across hemispheres in primary progressive aphasia (PPA) using digital histopathology and to identify clinicopathological correlates of these distinct proteinopathies. METHODS: In an autopsy cohort of PPA (FTLD-TDP = 13, FTLD-Tau = 14), we analyzed laterality and regional distribution of postmortem pathology, quantified using a validated digital histopathological approach, in available brain tissue from up to 8 cortical regions bilaterally. We related digital pathology to antemortem structural neuroimaging and specific clinical language features. RESULTS: Postmortem cortical pathology was left-lateralized in both FTLD-TDP (beta = -0.15, standard error [SE] = 0.05, p = 0.007) and FTLD-Tau (beta = -0.09, SE = 0.04, p = 0.015), but the degree of lateralization decreased with greater overall dementia severity before death (beta = -8.18, SE = 3.22, p = 0.015). Among 5 core pathology regions sampled, we found greatest pathology in left orbitofrontal cortex (OFC) in FTLD-TDP, which was greater than in FTLD-Tau (F = 47.07, df = 1,17, p < 0.001), and in left midfrontal cortex (MFC) in FTLD-Tau, which was greater than in FTLD-TDP (F = 19.34, df = 1,16, p < 0.001). Postmortem pathology was inversely associated with antemortem magnetic resonance imaging cortical thickness (beta = -0.04, SE = 0.01, p = 0.007) in regions matching autopsy sampling. Irrespective of PPA syndromic variant, single-word comprehension impairment was associated with greater left OFC pathology (t = -3.72, df = 10.72, p = 0.004) and nonfluent speech with greater left MFC pathology (t = -3.62, df = 12.00, p = 0.004) among the 5 core pathology regions. INTERPRETATION: In PPA, FTLD-TDP and FTLD-Tau have divergent anatomic distributions of left-lateralized postmortem pathology that relate to antemortem structural imaging and distinct language deficits. Although other brain regions may be implicated in neural networks supporting these complex language measures, our observations may eventually help to improve antemortem diagnosis of neuropathology in PPA. Ann Neurol 2019;85:630-643.

12.
Mov Disord ; 34(8): 1228-1232, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30884545

RESUMO

BACKGROUND: The Movement Disorder Society criteria for progressive supranuclear palsy define diagnostic allocations, stratified by certainty levels and clinical predominance types. We aimed to study the frequency of ambiguous multiple allocations and to develop rules to eliminate them. METHODS: We retrospectively collected standardized clinical data by chart review in a multicenter cohort of autopsy-confirmed patients with progressive supranuclear palsy, to classify them by diagnostic certainty level and predominance type and to identify multiple allocations. RESULTS: Comprehensive data were available from 195 patients. More than one diagnostic allocation occurred in 157 patients (80.5%). On average, 5.4 allocations were possible per patient. We developed four rules for Multiple Allocations eXtinction (MAX). They reduced the number of patients with multiple allocations to 22 (11.3%), and the allocations per patient to 1.1. CONCLUSIONS: The proposed MAX rules help to standardize the application of the Movement Disorder Society criteria for progressive supranuclear palsy. © 2019 International Parkinson and Movement Disorder Society.

13.
Ann Clin Transl Neurol ; 6(1): 4-14, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30656179

RESUMO

Objective: To automatically extract and quantify specific disease biomarkers of prosody from the acoustic properties of speech in patients with primary progressive aphasia. Methods: We analyzed speech samples from 59 progressive aphasic patients (non-fluent/agrammatic = 15, semantic = 21, logopenic = 23; ages 50-85 years) and 31 matched healthy controls (ages 54-89 years). Using a novel, automated speech analysis protocol, we extracted acoustic measurements of prosody, including fundamental frequency and speech and silent pause durations, and compared these between groups. We then examined their relationships with clinical tests, gray matter atrophy, and cerebrospinal fluid analytes. Results: We found a narrowed range of fundamental frequency in patients with non-fluent/agrammatic variant aphasia (mean 3.86 ± 1.15 semitones) compared with healthy controls (6.06 ± 1.95 semitones; P < 0.001) and patients with semantic variant aphasia (6.12 ± 1.77 semitones; P = 0.001). Mean pause rate was significantly increased in the non-fluent/agrammatic group (mean 61.4 ± 20.8 pauses per minute) and the logopenic group (58.7 ± 16.4 pauses per minute) compared to controls. In an exploratory analysis, narrowed fundamental frequency range was associated with atrophy in the left inferior frontal cortex. Cerebrospinal level of phosphorylated tau was associated with an acoustic classifier combining fundamental frequency range and pause rate (r = 0.58, P = 0.007). Receiver operating characteristic analysis with this combined classifier distinguished non-fluent/agrammatic speakers from healthy controls (AUC = 0.94) and from semantic variant patients (AUC = 0.86). Interpretation: Restricted fundamental frequency range and increased pause rate are characteristic markers of speech in non-fluent/agrammatic primary progressive aphasia. These can be extracted with automated speech analysis and are associated with left inferior frontal atrophy and cerebrospinal phosphorylated tau level.

14.
Ann Neurol ; 85(2): 259-271, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30549331

RESUMO

OBJECTIVE: To use digital histology in a large autopsy cohort of Lewy body disorder (LBD) patients with dementia to test the hypotheses that co-occurring Alzheimer disease (AD) pathology impacts the anatomic distribution of α-synuclein (SYN) pathology and that co-occurring neocortical tau pathology in LBDs associates with worse cognitive performance and occurs in a pattern differing from AD. METHODS: Fifty-five autopsy-confirmed LBD (Parkinson disease with dementia, n = 36; dementia with Lewy bodies, n = 19) patients and 25 AD patients were studied. LBD patients were categorized as having moderate/severe AD copathology (SYN + AD = 20) or little/no AD copathology (SYN-AD = 35). Digital measures of tau, ß-amyloid (Aß), and SYN histopathology in neocortical and subcortical/limbic regions were compared between groups and related to antemortem cognitive testing. RESULTS: SYN burden was higher in SYN + AD than SYN-AD in each neocortical region (F1, 54 = 5.6-6.0, p < 0.02) but was equivalent in entorhinal cortex and putamen (F1, 43-49 = 0.7-1.7, p > 0.2). SYN + AD performed worse than SYN-AD on a temporal lobe-mediated naming task (t27 = 2.1, p = 0.04). Antemortem cognitive test scores inversely correlated with tau burden (r = -0.39 to -0.68, p < 0.05). AD had higher tau than SYN + AD in all regions (F1, 43 = 12.8-97.2, p < 0.001); however, SYN + AD had a greater proportion of tau in the temporal neocortex than AD (t41 = 2.0, p < 0.05), whereas AD had a greater proportion of tau in the frontal neocortex than SYN + AD (t41 = 3.3, p < 0.002). SYN + AD had similar severity and distribution of neocortical Aß compared to AD (F1, 40-43 = 1.6-2.0, p > 0.1). INTERPRETATION: LBD patients with AD copathology harbor greater neocortical SYN pathology. Regional tau pathology relates to cognitive performance in LBD dementia, and its distribution may diverge from pure AD. Tau copathology contributes uniquely to the heterogeneity of cognitive impairment in LBD. Ann Neurol 2018; 1-13 ANN NEUROL 2019;85:259-271.

15.
Neurobiol Aging ; 73: 190-199, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368160

RESUMO

The majority (90%-95%) of amyotrophic lateral sclerosis (ALS) is sporadic, and ∼50% of patients develop symptoms of frontotemporal degeneration (FTD) associated with shorter survival. The genetic polymorphism rs12608932 in UNC13A confers increased risk of sporadic ALS and sporadic FTD and modifies survival in ALS. Here, we evaluate whether rs12608932 is also associated with frontotemporal disease in sporadic ALS. We identified reduced cortical thickness in sporadic ALS with T1-weighted magnetic resonance imaging (N = 109) relative to controls (N = 113), and observed that minor allele (C) carriers exhibited greater reduction of cortical thickness in the dorsal prefrontal, ventromedial prefrontal, anterior temporal, and middle temporal cortices and worse performance on a frontal lobe-mediated cognitive test (reverse digit span). In sporadic ALS with autopsy data (N = 102), minor allele homozygotes exhibited greater burden of phosphorylated tar DNA-binding protein-43 kda (TDP-43) pathology in the middle frontal, middle temporal, and motor cortices. Our findings demonstrate converging evidence that rs12608932 may modify frontotemporal disease in sporadic ALS and suggest that rs12608932 may function as a prognostic indicator and could be used to define patient endophenotypes in clinical trials.

16.
JAMA Neurol ; 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30508027

RESUMO

Importance: Neuronal and axonal destruction are hallmarks of neurodegenerative diseases, but it is difficult to estimate the extent and progress of the damage in the disease process. Objective: To investigate cerebrospinal fluid (CSF) levels of neurofilament light (NFL) protein, a marker of neuroaxonal degeneration, in control participants and patients with dementia, motor neuron disease, and parkinsonian disorders (determined by clinical criteria and autopsy), and determine its association with longitudinal cognitive decline. Design, Setting, and Participants: In this case-control study, we investigated NFL levels in CSF obtained from controls and patients with several neurodegenerative diseases. Collection of samples occurred between 1996 and 2014, patients were followed up longitudinally for cognitive testing, and a portion were autopsied in a single center (University of Pennsylvania). Data were analyzed throughout 2016. Exposures: Concentrations of NFL in CSF. Main Outcomes and Measures: Levels of CSF NFL and correlations with cognition scores. Results: A total of 913 participants (mean [SD] age, 68.7 [10.0] years; 456 [49.9%] women) were included: 75 control participants plus 114 patients with mild cognitive impairment (MCI), 397 with Alzheimer disease, 96 with frontotemporal dementia, 68 with amyotrophic lateral sclerosis, 41 with Parkinson disease (PD), 19 with PD with MCI, 29 with PD dementia, 33 with dementia with Lewy bodies, 21 with corticobasal syndrome, and 20 with progressive supranuclear palsy. Cognitive testing follow-up occurred for 1 to 18 years (mean [SD], 0.98 [2.25] years); autopsy-verified diagnoses were available for 120 of 845 participants with diseases (14.2%). There was a stepwise increase in CSF NFL levels between control participants (median [range] score, 536 [398-777] pg/mL), participants with MCI (831 [526-1075] pg/mL), and those with Alzheimer disease (951 [758-1261] pg/mL), indicating that NFL levels increase with increasing cognitive impairment. Levels of NFL correlated inversely with baseline Mini-Mental State Examination scores (ρ, -0.19; P < .001) in the full cohort (n = 822) and annual score decline in the full cohort (ρ, 0.36, P < .001), participants with AD (ρ, 0.25; P < .001), and participants with FTD (ρ, 0.46; P = .003). Concentrations of NFL were highest in participants with amyotrophic lateral sclerosis (median [range], 4185 [2207-7453] pg/mL) and frontotemporal dementia (2094 [230-7744] pg/mL). In individuals with parkinsonian disorders, NFL concentrations were highest in those with progressive supranuclear palsy (median [range], 1578 [1287-3104] pg/mL) and corticobasal degeneration (1281 [828-2713] pg/mL). The NFL concentrations in CSF correlated with TDP-43 load in 13 of 17 brain regions in the full cohort. Adding NFL to ß-amyloid 42, total tau, and phosphorylated tau increased accuracy of discrimination of diseases. Conclusions and Relevance: Levels of CSF NFL are associated with cognitive impairments in patients with Alzheimer disease and frontotemporal dementia. In other neurodegenerative disorders, NFL levels appear to reflect the intensity of the neurodegenerative processes.

17.
Nat Med ; 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30510257

RESUMO

Identifying the mechanisms through which genetic risk causes dementia is an imperative for new therapeutic development. Here, we apply a multistage, systems biology approach to elucidate the disease mechanisms in frontotemporal dementia. We identify two gene coexpression modules that are preserved in mice harboring mutations in MAPT, GRN and other dementia mutations on diverse genetic backgrounds. We bridge the species divide via integration with proteomic and transcriptomic data from the human brain to identify evolutionarily conserved, disease-relevant networks. We find that overexpression of miR-203, a hub of a putative regulatory microRNA (miRNA) module, recapitulates mRNA coexpression patterns associated with disease state and induces neuronal cell death, establishing this miRNA as a regulator of neurodegeneration. Using a database of drug-mediated gene expression changes, we identify small molecules that can normalize the disease-associated modules and validate this experimentally. Our results highlight the utility of an integrative, cross-species network approach to drug discovery.

19.
Alzheimers Dement ; 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321501

RESUMO

INTRODUCTION: The level of the presynaptic protein growth-associated protein 43 (GAP-43) in cerebrospinal fluid (CSF) has previously been shown to be increased in Alzheimer's disease (AD) and thus may serve as an outcome measure in clinical trials and facilitate earlier disease detection. METHODS: We developed an enzyme-linked immunosorbent assay for CSF GAP-43 and measured healthy controls (n = 43), patients with AD (n = 275), or patients with other neurodegenerative diseases (n = 344). In a subpopulation (n = 93), CSF GAP-43 concentrations from neuropathologically confirmed cases were related to Aß plaques, tau, α-synuclein, and TDP-43 pathologies. RESULTS: GAP-43 was significantly increased in AD compared to controls and most neurodegenerative diseases and correlated with the magnitude of neurofibrillary tangles and Aß plaques in the hippocampus, amygdala, and cortex. GAP-43 was not associated to α-synuclein or TDP-43 pathology. DISCUSSION: The presynaptic marker GAP-43 is associated with both diagnosis and neuropathology of AD and thus may be useful as a sensitive and specific biomarker for clinical research.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30297518

RESUMO

OBJECTIVES: The combination of high YKL-40 (a glial inflammatory marker) and low sAPPß (a soluble ß fragment of amyloid precursor protein) in cerebrospinal fluid (CSF) has been associated with frontotemporal lobar degeneration (FTLD) in clinical series. We investigate these biomarkers in a neuropathologically confirmed cohort of patients with FTLD. METHODS: CSF samples were selected from the Penn FTD Center (University of Pennsylvania). Participants were followed to autopsy and had a neuropathological diagnosis of FTLD-Tau (n=24), transactive response DNA-binding protein with 43 kDa (FTLD-TDP) (n=25) or Alzheimer's disease (AD, n=97). We compared levels of YKL-40 and sAPPß between groups and with cognitively normal controls (n=77), and assessed their diagnostic utility using receiver operating characteristic curves. We also investigated the effect of AD copathology and the correlation between these CSF markers and tau burden at autopsy. RESULTS: Both FTLD groups had lower levels of sAPPß, higher levels of YKL-40 and lower sAPPß:YKL-40 ratio in CSF compared with controls. The group of pure FTLD-Tau (without AD copathology) showed higher levels of YKL-40 than AD and than pure FTLD-TDP. YKL-40 levels correlated with pathological tau burden. The sAPPß:YKL-40 ratio had an area under the curve (AUC) of 0.91 (95% CI 0.86 to 0.96) to distinguish subjects with FTLD from controls, but lower values to distinguish FTLD from AD (AUC 0.70; 95% CI 0.61 to 0.79) and to discriminate FTLD-Tau from FTLD-TDP (AUC 0.67; 95% CI 0.51 to 0.82). CONCLUSIONS: Our study provides pathological confirmation that the combination of low sAPPß and high YKL-40 in CSF is associated with FTLD. These biomarkers could be useful in particular clinical settings when FTLD is suspected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA