Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Semin Respir Crit Care Med ; 40(5): 673-686, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31826268


Delirium, the most common form of acute brain dysfunction affecting up to 80% of intensive care unit (ICU) patients, has been shown to predict long-term cognitive impairment, one of the domains in "Post-ICU Syndrome" (PICS). The ICU environment affects several potentially modifiable risk factors for delirium, such as disorientation and disruption, of the sleep-wake cycle. Innovative solutions aim to transform standard concepts of ICU room design to limit potential stressors, and utilizing the patient care space as a treatment tool, exerting positive, therapeutic effects. The main areas affected by most architectural and interior design modifications are sound environment, light control, floor planning, and room arrangement. Implementation of corresponding solutions is challenging considering the significant medical and technical demands of ICUs. This article discusses innovative concepts and promising approaches in ICU design that may be used to prevent stress and to support the healing process of patients, potentially limiting the impact of delirium and PICS.

Crit Care ; 23(1): 308, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506074


BACKGROUND: Neuromuscular electrical stimulation (NMES) has been investigated as a preventative measure for intensive care unit-acquired weakness. Trial results remain contradictory and therefore inconclusive. As it has been shown that NMES does not necessarily lead to a contractile response, our aim was to characterise the response of critically ill patients to NMES and investigate potential outcome benefits of an adequate contractile response. METHODS: This is a sub-analysis of a randomised controlled trial investigating early muscle activating measures together with protocol-based physiotherapy in patients with a SOFA score ≥ 9 within the first 72 h after admission. Included patients received protocol-based physiotherapy twice daily for 20 min and NMES once daily for 20 min, bilaterally on eight muscle groups. Electrical current was increased up to 70 mA or until a contraction was detected visually or on palpation. Muscle strength was measured by a blinded assessor at the first adequate awakening and ICU discharge. RESULTS: One thousand eight hundred twenty-four neuromuscular electrical stimulations in 21 patients starting on day 3.0 (2.0/6.0) after ICU admission were included in this sub-analysis. Contractile response decreased from 64.4% on day 1 to 25.0% on day 7 with a significantly lower response rate in the lower extremities and proximal muscle groups. The electrical current required to elicit a contraction did not change over time (day 1, 50.2 [31.3/58.8] mA; day 7, 45.3 [38.0/57.5] mA). The electrical current necessary for a contractile response was higher in the lower extremities. At the first awakening, patients presented with significant weakness (3.2 [2.5/3.8] MRC score). When dividing the cohort into responders and non-responders (> 50% vs. ≤ 50% contractile response), we observed a significantly higher SOFA score in non-responders. The electrical current necessary for a muscle contraction in responders was significantly lower (38.0 [32.8/42.9] vs. 54.7 [51.3/56.0] mA, p < 0.001). Muscle strength showed higher values in the upper extremities of responders at ICU discharge (4.4 [4.1/4.6] vs. 3.3 [2.8/3.8] MRC score, p = 0.036). CONCLUSION: Patients show a differential contractile response to NMES, which appears to be dependent on the severity of illness and also relevant for potential outcome benefits. TRIAL REGISTRATION: ISRCTN ISRCTN19392591 , registered 17 February 2011.

Ann Intensive Care ; 9(1): 100, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486927


BACKGROUND: Serum potassium concentrations are commonly between 3.5 and 5.0 mmol/l. Standardised protocols for potassium range and supplementation in the ICU are lacking. The purpose of this retrospective analysis of ICU patients was to investigate potassium concentrations, variability and supplementation, and their association with in-hospital mortality. METHODS: ICU patients ≥ 18 years, with ≥ 2 serum potassium values, treated at the Charité - Universitätsmedizin Berlin between 2006 and 2018 were eligible for inclusion. We categorised into groups of mean potassium concentrations: < 3.0, 3.0-3.5, > 3.5-4.0, > 4.0-4.5, > 4.5-5.0, > 5.0-5.5, > 5.5 mmol/l and potassium variability: 1st, 2nd and ≥ 3rd standard deviation (SD). We analysed the association between the particular groups and in-hospital mortality and performed binary logistic regression analysis. Survival curves were performed according to Kaplan-Meier and tested by Log-Rank. In a subanalysis, the association between potassium supplementation and in-hospital mortality was investigated. RESULTS: In 53,248 ICU patients with 1,337,742 potassium values, the lowest mortality (3.7%) was observed in patients with mean potassium concentrations between > 3.5 and 4.0 mmol/l and a low potassium variability within the 1st SD. Binary logistic regression confirmed these results. In a subanalysis of 22,406 ICU patients (ICU admission: 2013-2018), 12,892 (57.5%) received oral and/or intravenous potassium supplementation. Potassium supplementation was associated with an increase in in-hospital mortality in potassium categories from > 3.5 to 4.5 mmol/l and in the 1st, 2nd and ≥ 3rd SD (p < 0.001 each). CONCLUSIONS: ICU patients may benefit from a target range between 3.5 and 4.0 mmol/l and a minimal potassium variability. Clear potassium target ranges have to be determined. Criteria for widely applied potassium supplementation should be critically discussed. Trial registration German Clinical Trials Register, DRKS00016411. Retrospectively registered 11 January 2019,

J Cachexia Sarcopenia Muscle ; 10(4): 734-747, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31016887


BACKGROUND: Early mobilization improves physical independency of critically ill patients at hospital discharge in a general intensive care unit (ICU)-cohort. We aimed to investigate clinical and molecular benefits or detriments of early mobilization and muscle activating measures in a high-risk ICU-acquired weakness cohort. METHODS: Fifty patients with a SOFA score ≥9 within 72 h after ICU admission were randomized to muscle activating measures such as neuromuscular electrical stimulation or whole-body vibration in addition to early protocol-based physiotherapy (intervention) or early protocol-based physiotherapy alone (control). Muscle strength and function were assessed by Medical Research Council (MRC) score, handgrip strength and Functional Independence Measure at first awakening, ICU discharge, and 12 month follow-up. Patients underwent open surgical muscle biopsy on day 15. We investigated the impact of muscle activating measures in addition to early protocol-based physiotherapy on muscle strength and function as well as on muscle wasting, morphology, and homeostasis in patients with sepsis and ICU-acquired weakness. We compared the data with patients treated with common physiotherapeutic practice (CPP) earlier. RESULTS: ICU-acquired weakness occurs within the entire cohort, and muscle activating measures did not improve muscle strength or function at first awakening (MRC median [IQR]: CPP 3.3 [3.0-4.3]; control 3.0 [2.7-3.4]; intervention 3.0 [2.1-3.8]; P > 0.05 for all), ICU discharge (MRC median [IQR]: CPP 3.8 [3.4-4.4]; control 3.9 [3.3-4.0]; intervention 3.6 [2.8-4.0]; P > 0.05 for all), and 12 month follow-up (MRC median [IQR]: control 5.0 [4.3-5.0]; intervention 4.8 [4.3-5.0]; P = 0.342 for all). No signs of necrosis or inflammatory infiltration were present in the histological analysis. Myocyte cross-sectional area in the intervention group was significantly larger in comparison with the control group (type I +10%; type IIa +13%; type IIb +3%; P < 0.001 for all) and CPP (type I +36%; type IIa +49%; type IIb +65%; P < 0.001 for all). This increase was accompanied by an up-regulated gene expression for myosin heavy chains (fold change median [IQR]: MYH1 2.3 [1.1-2.7]; MYH2 0.7 [0.2-1.8]; MYH4 5.1 [2.2-15.3]) and an unaffected gene expression for TRIM63, TRIM62, and FBXO32. CONCLUSIONS: In our patients with sepsis syndrome at high risk for ICU-acquired weakness muscle activating measures in addition to early protocol-based physiotherapy did not improve muscle strength or function at first awakening, ICU discharge, or 12 month follow-up. Yet it prevented muscle atrophy.