Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Nano Lett ; 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454039

RESUMO

Rechargeable solid-state Na metal batteries (SSNMB) can offer high operational safety and energy density. However, poor solid-solid contact between the electrodes and the electrolyte can dramatically increase interfacial resistance and Na dendrite formation, even at low current rates. Therefore, we developed a carbon-fiber-supported liquid Na-K alloy anode that ensures close anode-electrolyte contact, enabling superior cycle stability and rate capability. We then demonstrated the first cryogenic transmission electron microscopy (cryo-TEM) characterization of an SSNMB, capturing the evolution of solid-electrolyte interphase (SEI) and revealing both crystalline and amorphous phases, which could facilitate ion transport and prevent continuous side reactions. By enhancing contact between the Na-K alloy and solid-state electrolyte, these symmetric cells are capable of cycling for over 800 h without notable increased polarization and enable an unprecedented critical current density (CCD) at 40 mA cm-2. Our liquid Na-K alloy approach offers a promising strategic avenue toward commercial SSNMBs.

2.
Angew Chem Int Ed Engl ; : e202215157, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333269

RESUMO

Solid superbases can catalyze diverse reactions under mild conditions, while they suffer from aggregation of basic sites and poor stability during recycling. Here we report a new generation of solid superbases derived from K single atoms (SAs) prepared by a tandem redox strategy. The initial redox reaction takes place between base precursor KNO3 and graphene support, producing K2 O at 400 °C. Further increasing the temperature to 800 °C, the graphene reduces K2 O to K anchored by its vacancies, leading to the generation of K SAs (denoted as K1 /G). The source of basicity in the K1 /G is K SAs, and neighboring single atoms (NSAs) possess superbasicity, which is different from conventional basicity originated from oxygen and nitrogen atoms. Due to the superbasicity as well as high dispersion and anchoring of basic sites, the K1 /G shows excellent catalytic activity and stability in transesterification reaction, which is much superior to the reported catalysts.

3.
Nanoscale ; 14(45): 17036-17043, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36367106

RESUMO

Inversion symmetry breaking plays a critical role in the formation of magnetic skyrmions. Therefore, for the application of skyrmion-based devices, it is important to develop novel engineering techniques and explore new non-centrosymmetric lattices. In this paper, we report the rational synthesis of stable γ-phase MnS1-xSex (0 ≤ x ≤ 0.45) nanoflakes with an asymmetric distribution of the elemental content, which persists on inversion symmetry breaking. The temperature dependence of resonant second-harmonic generation characterization reveals that a non-centrosymmetric crystal structure exists in our as-grown γ-phase MnS1-xSex with spatial-inversion symmetry breaking. By tuning the parameters of nucleation temperature and growth time, we produced a detailed growth phase diagram, revealing a controllable as-grown structure evolution from γ-phase wurtzite-type to α-phase rock-salt type structure of MnS1-xSex nanoflakes. Our work provides a new playground to explore novel materials that have broken inversion symmetry.

4.
Toxins (Basel) ; 14(10)2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36287967

RESUMO

Cotton bollworm (Helicoverpa armigera) is a Lepidopteran noctuid pest with a global distribution. It has a wide range of host plants and can harm cotton, tomato, tobacco, and corn, as well as other crops. H. armigera larvae damage the flower buds, flowers, and fruits of tomato and cause serious losses to tomato production. Tomato uses the allelochemical 2-tridecanone to defend against this damage. So far, there have been no reports on whether the adaptation of H. armigera to 2-tridecanone is related to its symbiotic microorganisms. Our study found that Corynebacterium sp. 2-TD, symbiotic bacteria in H. armigera, mediates the toxicity of the 2-tridecanone to H. armigera. Corynebacterium sp. 2-TD, which was identified by 16S rDNA gene sequence analysis, was screened out using a basal salt medium containing a unique carbon source of 2-tridecanone. Then, Corynebacterium sp. 2-TD was confirmed to be distributed in the gut of H. armigera by quantitative PCR (qPCR) and fluorescence in situ hybridization (FISH). The survival rate of H. armigera increased by 38.3% under 2-tridecanone stress after inoculation with Corynebacterium sp. 2-TD. The degradation effect of Corynebacterium sp. 2-TD on 2-tridecanone was verified by ultra-high-performance liquid chromatography (UPLC). Our study is the first to report the isolation of gut bacteria that degrade 2-tridecanone from the important agricultural pest H. armigera and to confirm bacterial involvement in host adaptation to 2-tridecanone, which provides new insights into the adaptive mechanism of agricultural pests to host plants.


Assuntos
Mariposas , Animais , Hibridização in Situ Fluorescente , Larva , Corynebacterium/genética , Feromônios/metabolismo , DNA Ribossômico , Carbono/metabolismo
5.
J Am Chem Soc ; 144(44): 20372-20384, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36283038

RESUMO

The poor durability of Pt-based nanoparticles dispersed on carbon black is the challenge for the application of long-life polymer electrolyte fuel cells. Recent work suggests that Fe- and N-codoped carbon (Fe-N-C) might be a better support than conventional high-surface-area carbon. In this work, we find that the electrochemical surface area retention of Pt/Fe-N-C is much better than that of commercial Pt/C during potential cycling in both acidic and basic media. In situ inductively coupled plasma mass spectrometry studies indicate that the Pt dissolution rate of Pt/Fe-N-C is 3 times smaller than that of Pt/C during cycling. Density functional theory calculations further illustrate that the Fe-N-C substrate can provide strong and stable support to the Pt nanoparticles and alleviate the oxide formation by adjusting the electronic structure. The strong metal-substrate interaction, together with a lower metal dissolution rate and highly stable support, may be the reason for the significantly enhanced stability of Pt/Fe-N-C. This finding highlights the importance of carbon support selection to achieve a more durable Pt-based electrocatalyst for fuel cells.

6.
ACS Nano ; 16(10): 16966-16975, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36222559

RESUMO

The practical application of a Na/K-metallic anode is intrinsically hindered by the poor cycle life and safety issues due to the unstable electrode/electrolyte interface and uncontrolled dendrite growth during cycling. Herein, we solve these issues through an in situ reaction of an oxyhalogenide (BiOCl) and Na to construct an artificial solid electrolyte interphase (SEI) layer consisting of an alloy (Na3Bi) and a solid electrolyte (Na3OCl) on the surface of the Na anode. As demonstrated by theoretical and experimental results, such an artificial SEI layer combines the synergistic properties of high ionic conductivity, electronic insulation, and interfacial stability, leading to uniform dendrite-free Na deposition beneath the hybrid SEI layer. The protected Na anode presents a low voltage polarization of 30 mV, achieving an extended cycling life of 700 h at 1 mA cm-2 in the carbonate-based electrolyte. The full cell based on the Na3V2(PO4)3 cathode and hybrid SEI-protected Na anode shows long-term stability. When this strategy is applied to a K metal anode, the protected K anode also reaches a cycling life of over 4000 h at 0.5 mA cm-2 with a low voltage polarization of 100 mV. Our work provides an important insight into the design principles of a stable artificial SEI layer for high-energy-density metal batteries.

7.
Insects ; 13(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292911

RESUMO

Spodoptera frugiperda (J. E. Smith), is commonly known as fall armyworm, native to tropical and subtropical regions of America, is an important migratory agricultural pest. It is important to understand the resistance and internal mechanism of action of S. frugiperda against lufenuron in China. Lufenuron is one of the main insecticides recommended for field use in China and has a broad prospect in the future. We conducted a bioassay using the diet-overlay method and found that the current S. frugiperda in China are still at a low level of resistance to lufenuron. Secondly, we examined whether the mutation I1040M (I1042M in Plutella xylostella), associated with lufenuron resistance, was produced in the field. And then we tested the expression of chitin synthase SfCHSA and SfCHSB in different tissues, and the changes of these two genes after lufenuron induction. The results showed that there is still no mutation generation in China and there is a significant change in the expression of SfCHSA under the effect of lufenuron. In conclusion, our study suggests that field S. frugiperda populations in 2019 and 2020 were less resistant to lufenuron. In fall armyworm, chitin synthases included SfCHSA and SfCHSB genes, and after induction treatment with lufenuron, the expression of the SfCHSA gene was significantly increased. In SfCHSA, no mutation has been detected in the site associated with lufenuron resistance. Secondly, in S. frugiperda larvae, the SfCHSA gene was the highest in the head of the larvae, followed by the integument; while the SfCHSB gene was mainly concentrated in the midgut. Therefore, we believe that the SfCHSA gene plays a greater role in the resistance of S. frugiperda to lufenuron than the SfCHSB gene. It is worth noting that understanding the level of resistance to lufenuron in China, the main mechanism of action of lufenuron on larvae, and the mechanism of resistance to lufenuron in S. frugiperda will help in crop protection as well as in extending the life span of this insecticide.

8.
Front Pharmacol ; 13: 821847, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071836

RESUMO

Background: Inappropriate medication use is common around the world, particularly among older patients, and, despite potentially being preventable, often leads to adverse clinical and economic outcomes. However, there is a dearth of information regarding this prominent issue in China. Objectives: To evaluate the extent to which the physician can correctly identify potentially inappropriate medication (PIM) in older patients and to understand physicians' attitudes towards improving PIM knowledge. Methods: An online, cross-sectional survey was conducted anonymously among practicing physicians in China from November through December 2020. Knowledge of PIM was accessed using seven clinical vignettes covering a wide variety of therapeutic areas. Source of information and perceived barriers regarding PIM were also evaluated. We performed the ordinary least square regression analysis to understand the potential factors related to physicians' knowledge of PIM. Results: A total of 597 study participants were included in the analysis. More than half of them had never heard of any screening tool for PIMs (n = 328, 54.9%) and the most frequently acknowledged tool was the China PIM Criteria (n = 259, 43.4%). For the seven clinical vignettes testing physicians' knowledge on the medications that should be generally avoided in older patients, the mean score was 2.91 points out of 7 (SD: 1.32), with the median score of three points (IQR: 2-4). Only one-third of the respondents were feeling confident when prescribing for older patients (n = 255, 35.08%). Package inserts have been used as the major source of PIM information (always, n = 177, 29.65%; frequently, n = 286, 47.91%). Perceived barriers to appropriate prescribing include polypharmacy (n = 460, 77.05%), lack of formal education on prescribing for the older patients (n = 428, 71.69%). Conclusion: In this online survey evaluating physicians' ability to detect PIM for older patients, approximately 40% of PIM were recognized, suggesting an insufficient level of knowledge about appropriate prescribing.

9.
Neuroimage Clin ; 36: 103159, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36063758

RESUMO

Alzheimer's disease (AD) pathogenesis is associated with alterations in neurometabolites and cortical microstructure. However, our understanding of alterations in neurochemicals in the prefrontal cortex and their relationship with changes in cortical microstructure in AD remains unclear. Here, we studied the levels of neurometabolites in the left dorsolateral prefrontal cortex (DLPFC) in healthy older adults and patients with amnestic Mild Cognitive Impairments (aMCI) using single-voxel proton-magnetic resonance spectroscopy (1H-MRS). N-acetyl aspartate (NAA), glutamate+glutamate (Glx), Myo-inositol (mI), and γ-aminobutyric acid (GABA) brain metabolite levels were quantified relative to total creatine (tCr = Cr + PCr). aMCI had significantly decreased NAA/tCr, Glx/tCr, NAA/mI, and increased mI/tCr levels compared with healthy controls. Further, we leveraged advanced diffusion MRI to extract neurite properties in the left DLPFC and found a significant positive correlation between NAA/tCr, related to neuronal intracellular compartment, and neurite density (ICVF, intracellular volume fraction), and a negative correlation between mI/tCr and neurite orientation (ODI) only in healthy older adults. These data suggest a potential decoupling in the relationship between neurite microstructures and NAA and mI concentrations in DLPFC in the early stage of AD. Together, our results confirm altered DLPFC neurometabolites in prodromal phase of AD and provide unique evidence regarding the imbalance in the association between neurometabolites and neurite microstructure in early stage of AD.

10.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4200-4204, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086128

RESUMO

Gait tasks have become a topic of increasing inter-est in biological engineering research in recent years. One way to obtain the gait cycle time (GCT) is to analyze a subject's gait acceleration signal as recorded by an inertial measurement unit (IMU) [1]. An accurate peak detection of the IMU acceleration has thus become a requirement for GCT analysis. This study proposes a detection procedure for accurately detecting the peaks in a noisy IMU acceleration signal based on a frequency-domain analysis of the acceleration.


Assuntos
Aceleração , Marcha , Análise da Marcha
11.
Front Psychiatry ; 13: 898006, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935413

RESUMO

Background: The neurobiology underlying ASD is largely unknown but altered neural excitability/inhibitory ratios have been reported. Memantine is an N-methyl-D-aspartate (NMDA) glutamatergic antagonist studied for the treatment of core ASD symptoms, with mixed results. We examined whether glutamatergic levels were associated with and predicted response to memantine in an exploratory pilot study. Methods: Ten adult participants with ASD underwent proton magnetic resonance spectroscopy (1H-MRS) imaging at baseline and behavioral assessments before and after 12-weeks of open-label memantine. Post-treatment scores on Clinical Global Impressions-Improvement (CGI-I) for social interaction were the primary outcome measure, and scores on the Social Responsiveness Scale (SRS) were included as a secondary outcome. LCModel was used to quantify the concentrations of Point RESolved Spectroscopy-detected glutamate+glutamine (Glx) (and other neurometabolites, i.e., N-acetylaspartate, NAA; creatine+phosphocreatine, Cr+PCr, and myo-inositol, Ins), within the left dorsolateral prefrontal cortex (LDLPFC) and right (R) posterolateral cerebellum. SPM was used to perform brain tissue segmentation within the spectroscopic voxels. CGI-I scores post-treatment were used to classify the participants into two groups, responders (scores 1-3; n = 5) and non-responders (scores 4-7, or withdrew due to increase behaviors; n = 5). Independent samples t-tests, partial correlations and linear hierarchical regression models (SPSS) were used to determine between-group differences in neurometabolite concentrations and associations between neurometabolites and behavioral scores. Results: Responders and non-responders did not significantly differ in Glx levels in any region of interest, but differed in NAA levels in LDLPFC (higher in responders vs. non-responders). Although changes in CGI-I social scores were not correlated with Glx in any region of interest, the linear hierarchical regression did reveal that Glx and Ins levels in LDLPFC were predictors of post-treatment CGI-I social scores. Changes in SRS scores were correlated with baseline Cr+PCr levels in the LDLPFC. Discussion: Our pilot data suggest that baseline Glx, a marker of glutamatergic neurotransmission, did not directly predict response to memantine for social outcomes in adults with ASD. However, interactions between Glx and the neurometabolite associated with glial integrity (Ins) may help predict treatment response. Further, those with highest baseline NAA, a putative neuronal marker, and Cr+pCr, a brain energy metabolism marker, were the best responders. These preliminary results may explain some of the mixed results reported in previous memantine trials in ASD. Future studies will need to examine these results in a larger sample.

12.
Front Oncol ; 12: 941638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35992789

RESUMO

The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) with a Ku70/Ku80 heterodimer constitutes the intact DNA-PK kinase, which is an upstream component of the DNA repair machinery that signals the DNA damage, orchestrates the DNA repair, and serves to maintain genome integrity. Beyond its role in DNA damage repair, the DNA-PK kinase is also implicated in transcriptional regulation and RNA metabolism, with an illuminated impact on tumor progression and therapeutic responses. However, the efforts to identify DNA-PK regulated transcriptomes are limited by short-read sequencing to resolve the full complexity of the transcriptome. Therefore, we leveraged the PacBio Single Molecule, Real-Time (SMRT) Sequencing platform to study the transcriptome after DNA-PK inactivation to further underscore the importance of its role in diseases. Our analysis revealed additional novel transcriptome and complex gene structures in the DNA-PK inactivated cells, identifying 8,355 high-confidence new isoforms from 3,197 annotated genes and 523 novel genes. Among them, 380 lncRNAs were identified. We validated these findings using computational approaches and confirmatory transcript quantification with short-read sequencing. Several novel isoforms representing distinct splicing events have been validated through PCR experiments. Our analyses provide novel insights into DNA-PK function in transcriptome regulation and RNA metabolism.

13.
PeerJ ; 10: e13871, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032951

RESUMO

Purpose: The function of BZRAP1-AS1 is unknown in lung cancer. We evaluated the clinicopathologic significance of BZRAP1-AS1, and its role in non-small-cell lung cancer (NSCLC) progression. Patient and methods: Sixty-three NSCLC patients from Beijing Chest Hospital were included. The expression of BZRAP1-AS1 was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in tumor tissues and adjacent normal tissues. Then, the clinicopathological significance and prognostic value of BZRAP1-AS1 were analyzed by using our cohort and TCGA cohort. Finally, the effect of BZRAP1-AS1 on proliferation and motility of NSCLC cell lines were evaluated by cell growth assay, colony formation assay, xenograft tumorigenesis experiment in nude mice and transwell assays respectively. Results: Compared with adjacent normal tissues, BZRAP1-AS1 showed lower expression in NSCLC tumor tissues. As for the relationship between BZRAP1-AS1 and clinical characteristics, our results were consistent with those of TCGA data. BZRAP1-AS1 was lower in T1 than T2-T4 patients, N1-N3 than N0 patients. Low level BZRAP1-AS1 was related to shorter overall survival time (OS) in lung adenocarcinoma (LUAD), and poor first progression time (FP) in LUAD and lung squamous cell carcinoma (LUSC) patients. BZRAP1-AS1 was significantly associated with the prognosis of NSCLC patients. Overexpression of BZRAP1-AS1 inhibited proliferation and migration of H1299 and HCC827 cells. Conclusion: BZRAP1-AS1 expression decreases in tumor tissues with the increase of malignancy grades in NSCLC. BZRAP1-AS1 plays an anticancer role by inhibiting cell proliferation, invasion, and metastasis, and has a potential prognostic value in NSCLC. BZRAP1-AS1 may serve as a diagnostic marker and therapeutic target for NSCLC.

14.
Microbiol Spectr ; 10(5): e0181622, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040162

RESUMO

The cell wall peptidoglycan of bacteria is essential for their survival and shape development. The penicillin-binding proteins (PBPs) are responsible for the terminal stage of peptidoglycan assembly. It has been shown that PBPC, a member of class A high-molecular-weight PBP, played an important role in morphology maintenance and stress response in Clavibacter michiganensis. Here, we reported the stress response strategies under viable but nonculturable (VBNC) state and revealed the regulation of peptidoglycan assembly by PBPC in C. michiganensis cells. Using atomic force microscopy imaging, we found that peptidoglycan of C. michiganensis cells displayed a relatively smooth and dense surface, whereas ΔpbpC was characterized by a "ridge-and-groove" surface, which was more distinctive after Cu2+ treatment. The peptidoglycan layer of wild type cells exhibited a significant increase in thickness and slight increase in cross-linkage following Cu2+ treatment. Compared with wild type, the thickness and cross-linkage of peptidoglycan decreased during log phase in ΔpbpC cells, but the peptidoglycan cross-linkage increased significantly under Cu2+ stress, while the thickness did not change. It is noteworthy that the above changes in the peptidoglycan layer resulted in a significant increase in the accumulation of amylase and exopolysaccharide in ΔpbpC. This study elucidates the role of PBPC in Gram-positive rod-shaped plant pathogenic bacterium in response to environmental stimuli by regulating the assembling of cell wall peptidoglycan, which is significant in understanding the survival of C. michiganensis under stress and the field epidemiology of tomato bacterial canker disease. IMPORTANCE Peptidoglycan of cell walls in bacteria is a cross-linked and meshlike scaffold that provides strength to withstand the external pressure. The increased cross-linkage in peptidoglycan and altered structure in VBNC cells endowed the cell wall more resistant to adversities. Here we systematically evaluated the stress response strategies in Gram-positive rod-shaped bacterium C. michiganensis log phase cells and revealed a significant increase of peptidoglycan thickness and slight increase of cross-linkage after Cu2+ treatment. Most strikingly, knocking-out of PBPC leads to a significant increase in cross-linking of peptidoglycan in response to Cu2+ treatment. Understanding the stress resistance mechanism and survival strategy of phytopathogenic bacteria is the basis of exploring bacterial physiology and disease epidemiology.


Assuntos
Peptidoglicano , Proteína C , Peptidoglicano/química , Proteínas de Ligação às Penicilinas/genética , Parede Celular , Amilases
15.
Nano Lett ; 22(13): 5600-5606, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35775837

RESUMO

Electrochemical nitrate reduction has become an appealing "waste-to-wealth" approach for sustainable NH3 synthesis owing to its mild operating conditions. However, developing catalysts with high activities and Faradaic efficiencies for this complicated eight-electron reaction is a great challenge. Herein, bismuth ferrite (BiFeO3) flakes, with a distorted perovskite-type structure, are demonstrated to be excellent catalysts for electrochemical NH3 synthesis via nitrate reduction, with a maximum Faradaic efficiency of 96.85%, NH3 yield of 90.45 mg h-1 mgcat-1, at -0.6 V vs. reversible hydrogen electrode. During the nitrate reduction reaction, the crystalline BiFeO3 rapidly converts into an amorphous phase, which is stable in the long term reaction. These results open a new window for rational design of more active and durable electrocatalysts.

16.
Transl Lung Cancer Res ; 11(6): 1079-1088, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35832449

RESUMO

Background: Although a well-acknowledged component of curative surgery for lung cancer, investigators have recently questioned the need for mediastinal lymph node dissection (MLND) in early-stage lung cancer cases. As such, the accurate prediction of N2 stage prior to surgery has become increasingly critical. But diagnostic biomarkers predicting N2 metastases are deficient, which are urgently needed. Methods: We extracted the data of non-small cell lung cancer (NSCLC) patients whose clinical information and follow-up data are complete and without preoperative induction therapy from the Surveillance, Epidemiology, and End Results (SEER) database. The SEER program registries routinely collect demographic and clinic data on patients. And the prognostic differences were analyzed according to the presence or absence of MLND in their lung resection using the R package. Subsequently, the correlations between pN2 metastasis and clinical characteristics were analyzed. In parallel, the long non-coding RNAs (lncRNAs) associated with pN2 status were screened in The Cancer Genome Atlas (TCGA) database by expression difference analysis between pN0-N1 and pN2 patients using limma. Their diagnostic efficiency for detecting N2 metastases was evaluated using receiver operating characteristic (ROC) curves, and a combined diagnostic model was constructed using logistic regression and ROC curve analyses in lung adenocarcinoma (LUAD). Results: There were 16,772 patients in MLND group, and 2,699 cases in no-MLND group. The clinical data from SEER showed that the incidence of N2 metastasis was low in pT1 NSCLC (1,023/16,772, 6.10%), but the prognosis of no-MLND patients was poorer than those who underwent MLND (P<0.001, HR =1.605). Pathological N2 metastasis was correlated with age, histologic type, and tumor size. On the other hand, five lncRNAs (LINC00892, AC099522.2, LINC01481, SCAMP1-AS1, and AC004812.2) were screened and confirmed as potential diagnostic biomarkers for detecting N2 metastasis in pT1 LUAD. The AUC of the combined indicators was 0.857. Conclusions: MLND may be oncologically necessary for selected T1 NSCLC patients based on the metastasis incidence and prognosis. A diagnostic model combining LINC00892, AC099522.2, LINC01481, SCAMP1-AS1, and AC004812.2 expression levels may have the potential to be a diagnostic biomarker for detecting N2 metastasis in pT1 LUAD. This study suggests that MLND might be omitted in patients with lower expression level of this diagnostic model.

17.
Adv Mater ; 34(34): e2204021, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35790038

RESUMO

Employing seawater splitting systems to generate hydrogen can be economically advantageous but still remains challenging, particularly for designing efficient and high Cl- -corrosion resistant trifunctional catalysts toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Herein, single CoNC catalysts with well-defined symmetric CoN4 sites are selected as atomic platforms for electronic structure tailoring. Density function theory reveals that P-doping into CoNC can lead to the formation of asymmetric CoN3 P1 sites with symmetry-breaking electronic structures, enabling the affinity of strong oxygen-containing intermediates, moderate H adsorption, and weak Cl- adsorption. Thus, ORR/OER/HER activities and stability are optimized simultaneously with high Cl- -corrosion resistance. The asymmetric CoN3 P1 structure based catalyst with boosted ORR/OER/HER performance endows seawater-based Zn-air batteries (S-ZABs) with superior long-term stability over 750 h and allows seawater splitting to operate continuously for 1000 h. A self-driven seawater splitting powered by S-ZABs gives ultrahigh H2 production rates of 497 µmol h-1 . This work is the first to advance the scientific understanding of the competitive adsorption mechanism between Cl- and reaction intermediates from the perspective of electronic structure, paving the way for synthesis of efficient trifunctional catalysts with high Cl- -corrosion resistance.

18.
Cells ; 11(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626687

RESUMO

Renal cell carcinoma (RCC) is one of the most aggressive urological malignancies and has a poor prognosis, especially in patients with metastasis. Although RCC is traditionally considered to be radioresistant, radiotherapy (RT) is still a common treatment for palliative management of metastatic RCC. Novel approaches are urgently needed to overcome radioresistance of RCC. Black phosphorus quantum dots (BPQDs) have recently received great attention due to their unique physicochemical properties and good biocompatibility. In the present study, we found that BPQDs enhance ionizing radiation (IR)-induced apoptotic cell death of RCC cells. BPQDs treatment significantly increases IR-induced DNA double-strand breaks (DSBs), as indicated by the neutral comet assay and the DSBs biomarkers γH2AX and 53BP1. Mechanistically, BPQDs can interact with purified DNA-protein kinase catalytic subunit (DNA-PKcs) and promote its kinase activity in vitro. BPQDs impair the autophosphorylation of DNA-PKcs at S2056, and this site phosphorylation is essential for efficient DNA DSBs repair and the release of DNA-PKcs from the damage sites. Consistent with this, BPQDs suppress nonhomologous end-joining (NHEJ) repair and lead to sustained high levels of autophosphorylated DNA-PKcs on the damaged sites. Moreover, animal experiments indicate that the combined approach with both BPQDs and IR displays better efficacy than monotreatment. These findings demonstrate that BPQDs have potential applications in radiosensitizing RCC cells.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Pontos Quânticos , Animais , Carcinoma de Células Renais/radioterapia , DNA/metabolismo , Reparo do DNA , Humanos , Neoplasias Renais/radioterapia , Fósforo , Polinucleotídeo 5'-Hidroxiquinase/metabolismo , Tolerância a Radiação
19.
Front Oncol ; 12: 891187, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574361

RESUMO

Drug resistance, undesirable toxicity and lack of selectivity are the major challenges of conventional cancer therapies, which cause poor clinical outcomes and high mortality in many cancer patients. Development of alternative cancer therapeutics are highly required for the patients who are resistant to the conventional cancer therapies, including radiotherapy and chemotherapy. The success of a new cancer therapy depends on its high specificity to cancer cells and low toxicity to normal cells. Utilization of bacteria has emerged as a promising strategy for cancer treatment. Attenuated or genetically modified bacteria were used to inhibit tumor growth, modulate host immunity, or deliver anti-tumor agents. The bacteria-derived immunotoxins were capable of destructing tumors with high specificity. These bacteria-based strategies for cancer treatment have shown potent anti-tumor effects both in vivo and in vitro, and some of them have proceeded to clinical trials. Pseudomonas aeruginosa, a Gram-negative bacterial pathogen, is one of the common bacteria used in development of bacteria-based cancer therapy, particularly known for the Pseudomonas exotoxin A-based immunotoxins, which have shown remarkable anti-tumor efficacy and specificity. This review concisely summarizes the current knowledge regarding the utilization of P. aeruginosa in cancer treatment, and discusses the challenges and future perspectives of the P. aeruginosa-based therapeutic strategies.

20.
Nano Lett ; 22(11): 4347-4353, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584238

RESUMO

The high specific capacity of alkalic metal (Li, Na, and K) anodes has drawn widespread interest; however, the practical applications of alkalic metal anodes have been hampered by dendrite growth and interfacial instability, resulting in performance deterioration and even safety issues. Here, we describe a simple method for building tunable fluoride-based artificial solid-electrolyte interphase (SEI) from the fluorination reaction of alkali metals with a mild organic fluorinating reagent. Comprehensive characterization by advanced electron microscopes shows that the LiF-based artificial SEI adopts a crystal-glass structure, which enables efficient Li ion transport and improves structural integrity against the volume changes that occur during Li plating/stripping. Compared with bare Li anode, the ones with artificial SEI exhibit decreased voltage hysteresis, enhanced rate capability, and prolonged cycle life. This method is also applied to generate fluoride-based artificial SEI on Na and K metal anodes that brings significant improvement in battery performance.


Assuntos
Fluoretos , Halogenação , Eletrodos , Interfase , Lítio/química , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...