Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pharm Biol ; 58(1): 208-218, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32114881

RESUMO

Context: It is common sense that chewing a mint leaf can cause a cooling feeling, while chewing ginger root will produce a burning feeling. In Traditional Chinese Medicine (TCM), this phenomenon is referred to as 'cold/hot' properties of herbs. Herein, it is reported that TCM with different "cold/hot" properties have different effects on the variation of cells.Objective: To explore the intrinsic 'cold/hot' properties of TCM from the perspective of cellular and molecular biology.Materials and methods: A375 cells were selected using Cancer Cell Line Encyclopaedia (CCLE) analysis and western blots. Hypaconitine and baicalin were selected by structural similarity analysis from 56 and 140 compounds, respectively. A wireless thermometry system was used to measure cellular temperature change induced by different compounds. Alteration of intracellular calcium influx was investigated by means of calcium imaging.Results: The IC50 values of GSK1016790A, HC067047, hypaconitine, and baicalin for A375 cells are 8.363 nM, 816.4 µM, 286.4 µM and 29.84 µM, respectively. And, 8 µM hypaconitine induced obvious calcium influx while 8 µM baicalin inhibited calcium influx induced by TRPV4 activation. Cellular temperature elevated significantly when treated with GSK1016790A or hypaconitine, while the results were reversed when cells were treated with HC067047 or baicalin.Discussion and conclusions: The changes in cellular temperature are speculated to be caused by the alteration of intracellular calcium influx mediated by TRPV4. In addition, the 'cold/hot' properties of compounds in TCM can be classified by using cellular temperature detection.

2.
Cardiovasc Diabetol ; 19(1): 29, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156272

RESUMO

The study regarding load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction is very interesting. But there are a few things we need to pay attention to.

3.
Nanoscale ; 12(9): 5521-5532, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32091066

RESUMO

Iron based nanomedicine (IBNM) has been one powerful diagnostic tool as a magnetic resonance imaging (MRI) contrast agent (CA) in the clinic for years. Conventional IBNMs are generally employed as T2-MRI CAs, but most of them are constrained in clinical indication expansion by magnetic susceptibility artifacts. In comparison, extremely small iron oxide (ESIO) with a core size less than 5 nm has demonstrated the T1-MRI effect, which provides prospects for a Gd-based agent alternative. Nevertheless, currently developed ESIOs for T1-MRI CAs always require harsh conditions such as a high temperature and high boiling point reagent. Moreover, very few of the currently developed ESIOs meet the stringent pharmaceutical standard. Herein, on the basis of a crystal nuclear precipitation-dissolution equilibrium mechanism and outer/inner sphere T1-MRI theory, monodisperse ESIOs with an average size of 3.43 nm (polydispersity index of 0.104) are fabricated using a moderate cooling procedure with mild coprecipitation reaction conditions. The as-synthesized ESIOs display around 3-fold higher T1 MRI signal intensity than that of commercial Ferumoxytol (FMT), comparable to that of Gd-based CAs in vitro. Additionally, the T1-MRI performance of the ESIOs is pH dependent and delivers bright signal augmentation. Eventually, the internalization into mesenchymal stem cells of the ESIO is realized in the absence of a transferring agent. Considering the identical structure and composition of the ESIOs as compared to that of FMT, they could meet the pharmaceutical criteria, thus providing great potential as T1-MRI Cas, for instance as stem cell tracers.

4.
Nanoscale ; 12(6): 4101-4109, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32022059

RESUMO

Due to different interactions between lipids and proteins, a plasma membrane can segregate into different membrane domains. Among them, ordered functional membrane domains are defined as "lipid rafts", which play key roles in many biological processes (e.g., signal transduction, endocytosis, etc.) in the cell. Hence, it will be of much biological significance to monitor and even regulate the dynamics of lipid rafts. In this work, we designed a ligand-modified spherical nanoparticle with coarse-grained molecular dynamics simulations, which can be encapsulated into the hydrophobic region of the lipid membrane and specifically target either raft or non-raft membrane domains. The preferred localization of the nanoparticle can be tuned by adjusting ligand hydrophobicity, length and density. Generally, more hydrophobic nanoparticles tend to target the raft domain, while less hydrophobic nanoparticles prefer the non-raft domain. Besides, ligand length and density jointly determine the exposure of nanoparticle cores and thus affect the roles of ligands in nanoparticles' final localization. Our results may provide insights into the experimental design of functional nanoparticles, targeting the lipid raft and regulating its dynamics.

5.
Medicine (Baltimore) ; 99(7): e19221, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32049861

RESUMO

BACKGROUND: To evaluate the effectiveness and safety of a newly designed intrauterine double-balloon catheter to arrest postpartum hemorrhage (PPH) following cesarean delivery (CD) for placenta previa. METHODS: We conducted an open-label, multicenter randomized controlled trial in two referral centers and one general hospital. Women with continuous bleeding after placental delivery following CD for placenta previa, who failed to respond to uterotonics, suturing and uterine devascularization, and in the absence of suspected deeply invasive accreta were eligible subjects. Eligible subjects were randomized to receive intrauterine double-balloon catheter (n = 102) or gauze packing (n = 102). The main outcome was the rate of successful hemostasis without the need for additional surgical interventions. The secondary outcomes included the volume of blood loss during and after CD, the rate of PPH, incidence and amount of blood transfusion, hysterectomy, surgical complications, intensive care unit admission, need for re-laparotomy, length of hospital stay, and readmission. RESULTS: The 224 participants were recruited before delivery, with 20 excluded (14 cases bleeding stopped after uterotonics and/or local myometrium sutures and 6 patients with placental increta). Finally, 102 women were assigned in catheter group and 102 others in gauze group. There was no difference in the rate of successful hemostasis in the catheter and gauze groups (93.1% vs 91.2%, P = .80). Compared with those in the gauze group, women in the catheter group showed significantly less blood loss within 24 hours postpartum (895 [612.3-1297.8] vs 1156 [882.5-1453.3] ml, P < .01), lower rate of PPH ≥1000 ml (42.2% vs 63.7%, P < .01). Accordingly, women in the catheter group had significantly less maternal adverse events such as postpartum anemia, puerperal morbidity, and postpartum pain. CONCLUSION: Uterine tamponade using a double-balloon catheter was as effective as gauze packing in hemostasis, and appeared to be superior in reducing postpartum blood loss and pain following CD for placenta previa. Using double-balloon catheter in managing PPH in this situation may be a preferable alternative to minimize maternal morbidity.


Assuntos
Cesárea/efeitos adversos , Placenta Prévia , Hemorragia Pós-Parto/prevenção & controle , Tamponamento com Balão Uterino/instrumentação , Adulto , Feminino , Humanos , Hemorragia Pós-Parto/etiologia , Gravidez
6.
Analyst ; 145(6): 2367-2377, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32031182

RESUMO

Salmonella spp. are zoonotic pathogens of substantial public health concern. To enable detection in the field or under instrument-free conditions, we developed a rapid and robust lateral flow fluorescent immunoassay based on strand exchange amplification (SEA-LFIA) for the quantitative detection of Salmonella spp. As far as we know, this work is the first report regarding the use of Bst DNA polymerase-assisted SEA for fluorescence sensing to detect Salmonella spp. The SEA method was further confirmed by enzymatic digestion and Sanger dideoxy sequencing. The specificity of SEA-LFIA assay was verified by 89 Salmonella strains (18 Salmonella reference strains and 71 clinical isolates) and 15 non-Salmonella reference strains (different genera). The sensitivity of SEA-LFIA assay was 6 × 100 CFU mL-1 of Salmonella pure culture or 3 × 104 CFU 25 g-1 of artificially spiked raw chicken meat. Using this assay, it was found that 37 (16%) of the 236 samples collected were positive, which was consistent with the results of conventional PCR. The cutoff value is 15 and SEA-LFIA assay only takes ∼30 min without high equipment and reagent cost. In addition, the proposed strategy can be easily extended by redesigning the corresponding amplification primers to detect target analytes. In conclusion, the optimized SEA-LFIA assay is an efficient and specific method for the detection of Salmonella spp., and can potentially serve as a new on-site diagnostic tool in life sciences.

8.
Anal Chem ; 92(4): 3270-3275, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32022536

RESUMO

Neural stem cells (NSCs) can gradually proliferate or differentiate during adherent culture. It is found that stem cells have different temperature characteristics in different physiological states. In order to detect the temperature of NSCs during adherent culture, in this study, we have designed a temperature monitoring system, in which a thin-film platinum resistor was used as the sensor. The NSCs were seeded on the sensor, and the data acquisition device was connected to the host computer via Bluetooth. Results indicate that there are about 5000 cells attached on the surface of each sensor, and the cell viability is maintained at about 90% after 24 h culture. An electrostatic force microscope (EFM) result proves that there is no electric field on the sensor surface to influence the activity of NSCs. This system can work continuously for more than 24 h with 0.05 °C detection sensitivity. Furthermore, the significant temperature change of NSCs is observed when stimulated by different concentrations of thyroid hormone, which demonstrates that the temperature change related to cell activity. Therefore, by detecting the temperature of the cell population, the fabricated system can provide reference information for studying the metabolic state of NSCs, as well as physiological responses of cells under various conditions in biomedical applications.

9.
Anal Chem ; 92(3): 2672-2679, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898456

RESUMO

Sulfur-containing species (SCS), especially sulfur dioxide-relevant species, play an essential role in ecological balance. Owing to the intrinsically labile and mobile characteristics of SCS, it is still considered to be an insurmountable challenge for multiplexed tracking dynamics of SCS with distinct molecular structure, valence state, and condensed state. To address this key problem, we proposed herein alternative versatile single-molecule sensors (VSMs) that intramolecularly integrate high affinity target-guided multiple recognition units into a single sensory molecule, clarified as molecular Nezha available in triplexed responses to gaseous sulfur dioxide, liquid sulfur trioxide, and aqueous bisulfite through ubiquitous charge transfer and nucleophilic addition. High-performance molecular Nezha remarkably facilitated promising applications in a quantitative visualization of SCS on lab-on-paper and tracking the dynamics transformation of SCS as well comprehensive evaluation of multiphase adsorption science of SCS on an advanced Zeolitic imidazolate framework-8 (ZIF-8).

10.
J Mater Chem B ; 8(5): 895-907, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31909406

RESUMO

Since its launch in 1997, rituximab (RTX) has extensively improved the treatment of CD20-positive follicular and diffuse large B cell non-Hodgkin lymphoma (NHL). The application of RTX is limited usually by the failed therapy because of resistance. Iron oxide nanomaterials have been explored for cancer detection and treatment in recent years. In this study, a multivalent nanoprobe comprising one Fe3O4 nanoparticle and several RTX antibodies was constructed for the targeted imaging and enhanced treatment of NHL. Poly(ethylene glycol) (PEG)-coated Fe3O4 nanoparticles were fabricated via a thermal decomposition method and ligand exchange. RTX was conjugated onto the surface of the Fe3O4-PEG nanoparticles to form Fe3O4-PEG-nAb (n = 2, 5 or 8) multivalent nanoprobes. These multivalent nanoprobes, with a core size of approximately 11 nm and a hydrodynamic diameter of about 22 nm, showed colloidal stability in buffer solution. The r2 relaxation rate of Fe3O4-PEG-nAb was similar to that of Fe3O4-PEG (309 ± 3.08 mM-1 s-1). The specificity of nanoprobes for CD20-positive Raji cells was assessed on a clinical magnetic resonance imaging scanner. The receptor binding site of one multivalent nanoprobe was more than that of one RTX, exhibiting valence-dependent induction of Raji cell apoptosis, and this effect could be enhanced by complement activation from blood serum added. A similar activity was observed in vivo in a NHL xenograft model. The multivalent nanoprobe treatment significantly reduced tumor burden and enhanced survival in comparison to the RTX group. Our studies demonstrate that the appropriate design and preparation of anticancer antibody-nanoparticle conjugates enable the generation of improved anticancer nanomedicines and could thus provide an efficient cancer theranostic strategy.

11.
Theranostics ; 10(2): 462-483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31903132

RESUMO

Drug delivery for tumor theranostics involves the extensive use of the enhanced permeability and retention (EPR) effect. Previously, various types of nanomedicines have been demonstrated to accumulate in solid tumors via the EPR effect. However, EPR is a highly variable phenomenon because of tumor heterogeneity, resulting in low drug delivery efficacy in clinical trials. Because ultrasonication using micro/nanobubbles as contrast agents can disrupt blood vessels and enhance the specific delivery of drugs, it is an effective approach to improve the EPR effect for the passive targeting of tumors. In this review, the basic thermal effect, acoustic streaming, and cavitation mechanisms of ultrasound, which are characteristics that can be utilized to enhance the EPR effect, are briefly introduced. Second, micro/nanobubble-enhanced ultrasound imaging is discussed to understand the validity and variability of the EPR effect. Third, because the tumor microenvironment is complicated owing to elevated interstitial fluid pressure and the deregulated extracellular matrix components, which may be unfavorable for the EPR effect, few new trends in smart bubble drug delivery systems, which may improve the accuracy of EPR-mediated passive drug targeting, are summarized. Finally, the challenging and major concerns that should be considered in the next generation of micro/nanobubble-contrast-enhanced ultrasound theranostics for EPR-mediated passive drug targeting are also discussed.

12.
ACS Nano ; 14(2): 2024-2035, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31927980

RESUMO

Early diagnosis and treatment of acute ischemic stroke poses a significant challenge due to its suddenness and short therapeutic time window. Human endogenous cells derived biomimetic drug carriers have provided new options for stroke theranostics since these cells have higher biosafety and targeting abilities than artificial carriers. Inspired by natural platelets (PLTs) and their role in targeting adhesion to the damaged blood vessel during thrombus formation, we fabricated a biomimetic nanocarrier comprising a PLT membrane envelope loaded with l-arginine and γ-Fe2O3 magnetic nanoparticles (PAMNs) for thrombus-targeted delivery of l-arginine and in situ generation of nitric oxide (NO). Results demonstrate that the engineered 200 nm PAMNs inherit the natural properties of the PLT membrane and achieve rapid targeting to ischemic stroke lesions under the guidance of an external magnetic field. Subsequent to the release of l-arginine at the thrombus site, endothelial cells produce NO, which promotes vasodilation to disrupt the local PLT aggregation. Rapid targeting of PAMNs to stroke lesions as well as in situ generation of NO prompts vasodilation, recovery of blood flow, and reperfusion of the stroke microvascular. Thus, these PLT membrane derived nanocarriers are diagnostically beneficial for localizing stroke lesions and a promising modality for executing therapies.

13.
Nanotoxicology ; 14(1): 59-76, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31519126

RESUMO

Zinc oxide nanoparticles (ZnO NPs) represent an important class of commercially applied materials. Recently, adverse effects of ZnO NPs were found in humans and animals following ingestion, although the effects on endocrine system disease remain unclear. In this study, ZnO NPs were orally administered to mice, and at doses of 25 mg/kg bw (body weight) ZnO NPs and above, plasma glucose increased significantly. The genome-wide effects of ZnO NPs were then investigated using RNA-sequencing technology. In the cluster analysis, the most significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways concerned membranes and their close association with endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) generation. Biochemical and gene and protein expression analyses revealed that ZnO NPs activated a xenobiotic biodegradation response and increased the expression of cytochrome P450 (CYP) enzymes in mice livers, leading to ER stress. The ER stress increased ROS generation. The high levels of ROS activated the MAPK and NF-κB pathways and induced an inflammation response, resulting in the phosphorylation of insulin receptor substrate 1. Thus, the insulin resistance that developed was the primary mechanism for the increase in the plasma glucose of mice treated orally with ZnO NPs.

14.
Med Phys ; 47(2): 498-508, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31705803

RESUMO

PURPOSE: The misalignment correction in cone beam computed tomography (CBCT), which is usually carried out in an offline manner, is a difficult and tedious process. It becomes even more challenging in microscopic CBCT due to the much higher requirements on spatial resolution. In practice, however, an offline approach for misalignment correction may not be readily implementable, especially in the situations where either time is of the essence or the process needs to be carried out repetitively. Thus, an online self-calibration (i.e., data sustained misalignment correction without the involvement of specific alignment phantom) would be more practical. In this work, we investigate the data sustained misalignment correction in microscopic CBCT via optimization under the Grangeat Epipolar Consistence Condition and evaluate its performance via phantom and specimen studies. METHODS: With the cost function defined according to the Grangeat Epipolar Consistency Condition (G-ECC) and by minimizing the cost function using the simplex-simulated annealing algorithm (SIMPSA), we evaluate and verify the G-ECC optimization-based online self-calibration method's performance. Performance is measured in sensitivity, robustness, and accuracy using the projection data of phantoms generated by computer simulation and botanical specimens acquired by a prototype microscopic CBCT. RESULTS: The online data sustained misalignment correction in microscopic CBCT via G-ECC optimization works very well in sensitivity and robustness, in addition to its accuracy of 0.27%, 0.48%, and 0.34% relative errors, respectively, in obtaining the three geometric parameters that are the most critical to image reconstruction in CBCT. Quantitatively, the performance in meeting the requirements on spatial resolution is comparable to, if not better than, that of the offline misalignment correction method, in which a specific alignment phantom has to be used. CONCLUSIONS: The G-ECC optimization-based online self-calibration approach provides a practical solution (as long as no latitudinal (lateral) data truncation occurs) for misalignment correction in microscopic CBCT, an application that demands high accuracy in geometric alignment for biological (cellular) imaging at super high spatial resolutions in the order of micrometers (2.1 µm).

15.
Artigo em Inglês | MEDLINE | ID: mdl-31831402

RESUMO

OBJECTIVE: Targeting in vivo has been a spotlight for precise medicine. Multiple strategies including passive targeting and active targeting have been proposed for this issue. However, the efficiency remains to be improved. It has been thought that physical field-guided targeting is a beneficial supplement for the passive and the active targeting. METHODS: Here, focused magnetic field was exploited to direct the targeting of magnetized erythrocytes in normal mice. RESULTS: The magnetic field-controlled targeting in vivo was found feasible. The systematic investigation about the aggregates in cerebral vessels showed that the aggregates were isotropic and able to stably exist for 6 hours. The formation of cellular aggregates can alter echoing characteristic of the blood vessels meaning the vascular wall became more rigid. If the erythrocytes were repeatingly directed into aggregation in an identical region, a stable plaque of erythrocytes can form, which can mimic the process of thrombosis. SIGNIFICANCE: We believe these results will be beneficial to the novel engineered strategy for targeted delivery of drug carriers and the innovative modeling method of vascular diseases.

17.
Dalton Trans ; 48(46): 17169-17173, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31720614

RESUMO

A magnetic internal heating single-precursor approach was exploited to fabricate higher quality Prussian blue nanoparticles (PBNPs) with excellent crystallinity, dispersibility and uniformity. Furthermore, the magnetic properties and MRI contrast effect were improved. Subsequently, significantly increased nanoenzyme activity has been demonstrated.

18.
Environ Toxicol ; 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31769605

RESUMO

Titanium dioxide nanoparticles (TiO2 NPs) are authorized food additives, and children have the highest exposure. Therefore, children are likely more susceptible to the adverse effects of TiO2 NPs than adults. Previous study showed that oral administration of 50 mg/kg body weight (bw) TiO2 NPs increase plasma glucose in mice. However, few studies have directly compared the adverse effects of exposure to TiO2 NPs on plasma glucose metabolism of different age groups. In this study, the developing (age 3 weeks) and adult mice (age 10 weeks) were orally administered with 50 mg/kg bw TiO2 NPs per day. The TiO2 NPs induced hyperglycemia earlier in the developing mice than in the adult mice. Then mechanisms were analyzed after mice were oral administration of TiO2 NPs for 8 weeks and 26 weeks, respectively. Results showed that the treatment with TiO2 NPs activated xenobiotic biodegradation in livers of both developing and adult mice at the early stage. However, only in the developing mice, TiO2 NPs induced endoplasmic reticulum (ER) stress in livers and increased reactive oxygen species in livers and sera in the early stage. The ER stress and ROS activated an inflammation response and mitogen-activated protein kinase pathways, thereby inducing insulin resistance in the livers of developing mice at the early stage. The response of the adult mice was delayed, and these changes were observed in the late stage of the study. The results of this study all suggest that children are more susceptible than adults to the toxicity of orally administered TiO2 NPs.

19.
Medicine (Baltimore) ; 98(48): e18087, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31770226

RESUMO

BACKGROUND: All cancers increase developing venous thromboembolism risk, and VTE is the second-leading cause of death among cancer patients. The anticoagulant drugs are considered to be the optimal treatment for patients with cancer-associated VTE. However, there is still controversy whether rivaroxaban, a new oral anticoagulant, can lead to better outcomes globally. METHODS: We will search PubMed, Web of Science, Cochrane Central Register of Controlled Trials and China National Knowledge Infrastructure for relevant published studies before 1 September, 2019, without any language restrictions. Only published randomized controlled trials that meet the inclusion criteria will be included. Subgroup analysis of the type of cancer, the type of VTE, cancer stage, age, sex, ethnicity, history of smoking and drinking as well as the mean, dose and duration of anticoagulants will be performed. DISCUSSION: Our study aims to estimate the efficacy and safety of rivaroxaban for patients with cancer-associated VTE and to provide recommendations to key stakeholders. TRIAL REGISTRATION: PROSPERO, October 23, 2019, CRD42019143265, https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=143265.


Assuntos
Anticoagulantes/uso terapêutico , Inibidores do Fator Xa/uso terapêutico , Neoplasias/complicações , Rivaroxabana/uso terapêutico , Tromboembolia Venosa/tratamento farmacológico , Feminino , Humanos , Masculino , Metanálise como Assunto , Projetos de Pesquisa , Revisão Sistemática como Assunto , Resultado do Tratamento , Tromboembolia Venosa/etiologia
20.
Part Fibre Toxicol ; 16(1): 41, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699096

RESUMO

BACKGROUND: Silicon dioxide nanoparticles (SiO2 NPs) are one of the most widely utilized NPs in various food sectors. However, the potential endocrine toxicity of SiO2 NPs has not been characterized. RESULTS: In the present study, mice were orally administered a series of doses of SiO2 NPs. All doses of SiO2 NPs were absorbed into the blood, liver, and pancreas of the mice. Administration of 100 mg/kg bw (body weight) of SiO2 NPs significantly increased blood glucose levels in mice. However, the same dose of SiO2 fine-particles (FPs) did not result in altered blood glucose. Whole-genome analysis showed that SiO2 NPs affected the expression of genes associated with reactive oxygen species (ROS) production and endoplasmic reticulum (ER) stress. In addition, we showed that SiO2 NPs activated xenobiotic metabolism, resulting in ER stress. Endoplasmic reticulum stress resulted in increased ROS production, which activated the NF-κB pathway leading to expression of inflammatory cytokines. Increased inflammatory cytokine expression resulted in serine phosphorylation of IRS1, which induced insulin resistance (IR). Furthermore these inflammatory cytokines activated the MAPK pathway, which further promoted the serine phosphorylation of IRS1. Insulin resistance resulted in elevated blood glucose. The ER stress inhibitor 4-phenylbutyric acid (4-PBA) inhibited SiO2 NP-induced ROS production. The ROS scavenger N-acetylcysteine (NAC) did not affect SiO2 NP-induced ER stress, but inhibited SiO2 NP-induced activation of the NF-κB and MAPK pathways, expression of inflammatory cytokines, SiO2 NP-induced serine phosphorylation of IRS1, and SiO2 NP-induced elevations of blood glucose. CONCLUSION: Silicon dioxide NPs induced IR through ER stress and generation of ROS, but SiO2 FPs did not. Therefore, lifelong exposure of humans to SiO2 NPs may result in detrimental effects on blood glucose. The results of this study strongly suggested that non-nanoformed SiO2 should be used as food additives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA