Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Signal Transduct Target Ther ; 6(1): 361, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620840

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy in the bone marrow characterized by chromosome instability (CIN), which contributes to the acquisition of heterogeneity, along with MM progression, drug resistance, and relapse. In this study, we elucidated that the expression of BUB1B increased strikingly in MM patients and was closely correlated with poor outcomes. Overexpression of BUB1B facilitated cellular proliferation and induced drug resistance in vitro and in vivo, while genetic targeting BUB1B abrogated this effect. Mechanistic studies unveiled that enforced expression of BUB1B evoked CIN resulting in MM poor outcomes mainly through phosphorylating CEP170. Interestingly, we discovered the existence of circBUB1B_544aa containing the kinase catalytic center of BUB1B, which was translated by a circular RNA of BUB1B. The circBUB1B_544aa elevated in MM peripheral blood samples was closely associated with MM poor outcomes and played a synergistic effect with BUB1B on evoking CIN. In addition, MM cells could secrete circBUB1B_544aa and interfere the MM microenvironmental cells in the same manner as BUB1B full-length protein. Intriguingly, BUB1B siRNA, targeting the kinase catalytic center of both BUB1B and circBUB1B_544aa, significantly inhibited MM malignancy in vitro and in vivo. Collectively, BUB1B and circBUB1B_544aa are promising prognostic and therapeutic targets of MM.

2.
Dig Dis Sci ; 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515875

RESUMO

BACKGROUND: Circular RNA (circRNA) tubulin gamma complex associated protein 3 (circTUBGCP3) has been reported to play an oncogenic role in colorectal cancer and osteosarcoma. AIMS: We further assessed the role and working mechanism of circTUBGCP3 in rectal cancer progression. METHODS: Colony formation assay and transwell assays were performed to analyze cell colony formation ability and motility. Flow cytometry was utilized to assess cell cycle progression and cell apoptosis. The production of lactate and the consumption of glucose were evaluated by fluorescence-based glucose/lactate assay kit to analyze cell glycolysis. The intermolecular interaction was verified by dual-luciferase reporter assay. In vivo experiments were carried out to analyze the role of circTUBGCP3 in tumor growth using xenograft tumor model. RESULTS: CircTUBGCP3 was significantly up-regulated in rectal cancer tissues and cell lines. CircTUBGCP3 interference inhibited the colony formation ability, migration, invasion, cell cycle progression, and glycolysis and promoted the apoptosis in rectal cancer cells. CircTUBGCP3 negative regulated microRNA-375 (miR-375) expression through interacting with it and circTUBGCP3 silencing-mediated effects in rectal cancer cells were largely based on the up-regulation of miR-375. Rho-associated coiled-coil-containing protein kinase 1 (ROCK1) was a target of miR-375, and ROCK1 was regulated by circTUBGCP3/miR-375 axis in rectal cancer cells. MiR-375 overexpression suppressed the malignant behaviors of rectal cancer cells partly through down-regulating ROCK1. CircTUBGCP3 interference restrained rectal cancer progression in vivo. CONCLUSION: CircTUBGCP3 acted as an oncogene to promote the malignant phenotypes of rectal cancer cells by modulating miR-375/ROCK1 axis.

3.
Front Immunol ; 12: 730070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552592

RESUMO

Background: Inflammation may trigger skeletal muscle atrophy induced by cancer cachexia. As a pro-inflammatory factor, interleukin-6 may cause skeletal muscle atrophy, but the underlying molecular mechanisms have not been explored. Methods: In this experimental study, we used adult male ICR mice, weighing 25 ± 2 g, and the continuous infusion of interleukin-6 into the tibialis anterior muscle to construct a skeletal muscle atrophy model (experimental group). A control group received a saline infusion. RNA-sequencing was used to analyze the differentially expressed genes in tissue samples after one and three days. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analysis were applied to define the function of these genes, and protein-protein interaction analysis was performed to identify potential transcription factors. Fluorescence microscopy was used to determine the muscle fiber cross-sectional area after 14 days. Results: Continuous infusion of interleukin-6 for 14 days caused significant muscle atrophy. RNA-sequencing found 359 differentially expressed genes in the 1- and 3-day tissue samples and 1748 differentially expressed genes only in the 3-day samples. Functional analysis showed that the differentially expressed genes found in both the 1- and 3-day samples were associated with immune receptor activation, whereas the differentially expressed genes found only in the 3-day sample were associated with reduced energy metabolism. The expression of multiple genes in the oxidative phosphorylation and tricarboxylic acid cycle pathways was down-regulated. Furthermore, differentially expressed transcription factors were identified, and their interaction with interleukin-6 and the differentially expressed genes was predicted, which indicated that STAT3, NF-κB, TP53 and MyoG may play an important role in the process of interleukin-6-induced muscle atrophy. Conclusions: This study found that interleukin-6 caused skeletal muscle atrophy through immune receptor activation and a reduction of the energy metabolism. Several transcription factors downstream of IL-6 have the potential to become new regulators of skeletal muscle atrophy. This study not only enriches the molecular regulation mechanism of muscle atrophy, but also provides a potential target for targeted therapy of muscle atrophy.

4.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360755

RESUMO

Increasing attention is being focused on the use of polypeptide-based N-methyl-d-aspartate (NMDA) receptor antagonists for the treatment of nervous system disorders. In our study on Achyranthes bidentata Blume, we identified an NMDA receptor subtype 2B (NR2B) antagonist that exerts distinct neuroprotective actions. This antagonist is a 33 amino acid peptide, named bidentatide, which contains three disulfide bridges that form a cysteine knot motif. We determined the neuroactive potential of bidentatide by evaluating its in vitro effects against NMDA-mediated excitotoxicity. The results showed that pretreating primary cultured hippocampal neurons with bidentatide prevented NMDA-induced cell death and apoptosis via multiple mechanisms that involved intracellular Ca2+ inhibition, NMDA current inhibition, and apoptosis-related protein expression regulation. These mechanisms were all dependent on bidentatide-induced inhibitory regulation of NR2B-containing NMDA receptors; thus, bidentatide may contribute to the development of neuroprotective agents that would likely possess the high selectivity and safety profiles inherent in peptide drugs.


Assuntos
Achyranthes/química , Hipocampo/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores , Peptídeos , Proteínas de Plantas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Peptídeos/química , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
5.
BMC Cancer ; 21(1): 905, 2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34364366

RESUMO

BACKGROUND: The tumor microenvironment (TME) has significantly correlation with tumor occurrence and prognosis. Our study aimed to identify the prognostic immune-related genes (IRGs)in the tumor microenvironment of colorectal cancer (CRC). METHODS: Transcriptome and clinical data of CRC cases were downloaded from TCGA and GEO databases. Stromal score, immune score, and tumor purity were calculated by the ESTIMATE algorithm. Based on the scores, we divided CRC patients from the TCGA database into low and high groups, and the differentially expressed genes (DEGs) were identified. Immune-related genes (IRGs) were selected by venn plots. To explore underlying pathways, protein-protein interaction (PPI) networks and functional enrichment analysis were used. After utilizing LASSO Cox regression analysis, we finally established a multi-IRGs signature for predicting the prognosis of CRC patients. A nomogram consists of the thirteen-IRGs signature and clinical parameters was developed to predict the overall survival (OS). We investigated the association between prognostic validated IRGs and immune infiltrates by TIMER database. RESULTS: Gene expression profiles and clinical information of 1635 CRC patients were collected from the TCGA and GEO databases. Higher stromal score, immune score and lower tumor purity were observed positive correlation with tumor stage and poor OS. Based on stromal score, immune score and tumor purity, 1517 DEGs, 1296 DEGs, and 1892 DEGs were identified respectively. The 948 IRGs were screened by venn plots. A thirteen-IRGs signature was constructed for predicting survival of CRC patients. Nomogram with a C-index of 0.769 (95%CI, 0.717-0.821) was developed to predict survival of CRC patients by integrating clinical parameters and thirteen-IRGs signature. The AUC for 1-, 3-, and 5-year OS were 0.789, 0.783 and 0.790, respectively. Results from TIMER database revealed that CD1B, GPX3 and IDO1 were significantly related with immune infiltrates. CONCLUSIONS: In this study, we established a novel thirteen immune-related genes signature that may serve as a validated prognostic predictor for CRC patients, thus will be conducive to individualized treatment decisions.


Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Transcriptoma , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fibroblastos Associados a Câncer/metabolismo , Neoplasias Colorretais/mortalidade , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Curva ROC , Células Estromais/metabolismo
6.
Acta Biomater ; 2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34289422

RESUMO

Our previous studies have shown that extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs) promote neurite outgrowth of sensory and motor neurons in vitro. This study was aimed at generating an artificial nerve graft incorporated with SKP-SC-EVs to examine in vivo effects of SKP-SC-EVs on peripheral nerve regeneration. Here SKP-SC-EVs were isolated and then identified by morphological observation and phenotypic marker expression. Following co-culture with SCs or motoneurons, SKP-SC-EVs were internalized, showing the capability to enhance SC viability or motoneuron neurite outgrowth. In vitro, SKP-SC-EVs released from Matrigel could maintain cellular uptake property and neural activity. Nerve grafts were developed by incorporating Matrigel-encapsulated SKP-SC-EVs into silicone conduits. Functional evaluation, histological investigation, and morphometric analysis were performed to compare the nerve regenerative outcome after bridging the 10-mm long sciatic nerve defect in rats with our developed nerve grafts, silicone conduits (filled with vehicle), and autografts respectively. Our developed nerve grafts significantly accelerated the recovery of motor, sensory, and electrophysiological functions of rats, facilitated outgrowth and myelination of regenerated axons, and alleviated denervation-induced atrophy of target muscles. Collectively, our findings suggested that incorporation of SKP-SC-EVs into nerve grafts might represent a promising paradigm for peripheral nerve injury repair. STATEMENT OF SIGNIFICANCE: Nerve grafts have been progressively developed to meet the increasing requirements for peripheral nerve injury repair. Here we reported a design of nerve grafts featured by incorporation of Matrigel-encapsulated extracellular vesicles from skin-derived precursor Schwann cells (SKP-SC-EVs), because SKP-SC-EVs were found to possess in vitro neural activity, thus raising the possibility of cell-free therapy. Our developed nerve grafts yielded the satisfactory outcome of nerve grafting in rats with a 10-mm long sciatic nerve defect, as evaluated by functional and morphological assessments. The promoting effects of SKP-SC-EVs-incorporating nerve grafts on peripheral nerve regeneration might benefit from in vivo biological cues afforded by SKP-SC-EVs, which had been released from Matrigel and then internalized by residual neural cells in sciatic nerve stumps.

7.
Glia ; 69(10): 2391-2403, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34115425

RESUMO

Peripheral nerve injury triggers sequential phenotype alterations in Schwann cells, which are critical for axonal regeneration. Long noncoding RNAs (lncRNAs) are long transcripts without obvious coding potential. It has been reported that lncRNAs participate in diverse biological processes and diseases. However, the role of lncRNA in Schwann cells and peripheral nerve regeneration is unclear. Here, we identified an lncRNA, loc680254, which is upregulated in rat sciatic nerve after peripheral nerve injury. The loc680254 knockdown inhibits Schwann cell proliferation, enhances apoptosis, and hinders cell cycle, while loc680254 overexpression has the opposite effect. Mechanically, we found that loc680254 might act as a microRNA sponge to regulate the expression of mitosis-related gene, spindle and kinetochore associated complex subunit 1 (Ska1) and proline/serine-rich coiled-coil 1 (Psrc1). Silencing of Psrc1 or Ska1 attenuates the effect of loc680254 overexpression on Schwann cell proliferation. Finally, we repaired the rat sciatic nerve gap with chitosan scaffolds loaded with loc680254-overexpressing Schwann cells and evaluated axon regeneration and functional recovery. Our results indicated that loc680254 is a new potential modulator for Schwann cell proliferation, which could be targeted to develop novel therapeutic strategies for peripheral nerve repair.

8.
Exp Neurol ; 343: 113788, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147481

RESUMO

Increasing the intrinsic regeneration potential of neurons is the key to promote axon regeneration and repair of nerve injury. Therefore, identifying the molecular switches that respond to nerve injury may play critical role in improving intrinsic regeneration ability. The mechanisms by which injury unlocks the intrinsic axonal growth competence of mature neurons are not well understood. The present study identified the key regulatory genes after sciatic nerve crush injury by RNA sequencing (RNA-Seq) and found that the hub gene Vav1 was highly expressed at both early response and regenerative stages of sciatic nerve injury. Furthermore, Vav1 was required for axon regeneration of dorsal root ganglia (DRG) neurons and functional recovery. Krüppel-like factor 2 (Klf2) was induced by retrograde Ca2+ signaling from injured axons and could directly promote Vav1 transcription in adult DRG neurons. The increased Vav1 then promoted axon regeneration by activating Rac1 GTPase independent of its tyrosine phosphorylation. Collectively, these findings break through previous limited cognition of Vav1, and first reveal a crucial role of Vav1 as a molecular switch in response to axonal injury for promoting axon regeneration, which might further serve as a novel molecular therapeutic target for clinical nerve injury repair.

9.
Adv Healthc Mater ; 10(13): e2100242, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029000

RESUMO

Following severe spinal cord injury (SCI), dysregulated neuroinflammation causes neuronal and glial apoptosis, resulting in scar and cystic cavity formation during wound healing and ultimately the formation of an atrophic microenvironment that inhibits nerve regrowth. Because of this complex and dynamic pathophysiology, a systemic solution for scar- and cavity-free wound healing with microenvironment remodeling to promote nerve regrowth has rarely been explored. A one-step solution is proposed through a self-assembling, multifunctional hydrogel depot that punctually releases the anti-inflammatory drug methylprednisolone sodium succinate (MPSS) and growth factors (GFs) locally according to pathophysiology to repair severe SCI. Synergistically releasing the anti-inflammatory drug MPSS and GFs in the hydrogel depot throughout SCI pathophysiology protects spared tissues/axons from secondary injury, promotes scar boundary- and cavity-free wound healing, and results in permissive bridges for remarkable axonal regrowth. Behavioral and electrophysiological studies indicate that remnants of spared axons, not regenerating axons, mediate functional recovery, strongly suggesting that additional interventions are still required to render the rebuilt neuronal circuits functional. These findings pave the way for the development of a systemic solution to treat acute SCI.


Assuntos
Hidrogéis , Traumatismos da Medula Espinal , Axônios , Humanos , Regeneração Nervosa , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
10.
Plants (Basel) ; 10(4)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807496

RESUMO

Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the main constituent lipids of thylakoid and chloroplast envelop membranes. Many microalgae can accumulate large amounts of triacylglycerols (TAGs) under adverse environmental conditions, which is accompanied by degradation of the photosynthetic membrane lipids. However, the process mediating the conversion from galactolipids to TAG remains largely unknown. In this study, we performed genetic and biochemical analyses of galactosyl hydrolases (CrGH) identified in the proteome of lipid bodies of the green microalga Chlamydomonas reinhardtii. The recombinant CrGH was confirmed to possess galactosyl hydrolase activity by using o-nitrophenyl-ß-D-galactoside as the substrate, and the Michaelis constant (Km) and Kcat of CrGH were 13.98 µM and 3.62 s-1, respectively. Comparative lipidomic analyses showed that the content of MGDG and DGDG increased by 14.42% and 24.88%, respectively, in the CrGH-deficient mutant as compared with that of the wild type cc4533 grown under high light stress conditions, and meanwhile, the TAG content decreased by 32.20%. Up-regulation of CrGH at both a gene expression and protein level was observed under high light stress (HL) conditions. In addition, CrGH was detected in multiple subcellular localizations, including the chloroplast envelope, mitochondria, and endoplasmic reticulum membranes. This study uncovered a new paradigm mediated by the multi-localized CrGH for the conversion of the photosynthetic membranes to TAGs.

12.
Life Sci ; 276: 119422, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33781833

RESUMO

AIMS: Inflammation plays a key role in peripheral nerve adhesion and often leads to severe pain and nerve dysfunction. Minocycline was reported to have potent anti-inflammatory effects and might be a promising drug to prevent or attenuate peripheral nerve adhesion. The present study aimed to clarify whether minocycline contributes to nerve adhesion protection and its underlying mechanism. MATERIALS AND METHODS: Rats with sciatic nerve adhesion induced by glutaraldehyde glue (GG) were intraperitoneally injected with minocycline or saline every 12 h for 7 consecutive days. After that, the adhesion score, Ashcroft score, demyelination, macrophage polarization and inflammatory factors in peripheral nerve adhesion tissues or tissues in sham group were determined with histological staining, western blot and real time-PCR. Murine macrophage RAW264.7 cells were stimulated by LPS alone or together with minocycline at different concentrations and time duration to study the mechanism of minocycline in alleviating nerve adhesion. KEY FINDINGS: We found that minocycline treatment reduced the adhesion score, Ashcroft score, the growth of scar tissue, demyelination, and macrophage recruitment. Moreover, minocycline significantly and dose-dependently promoted regulatory macrophage polarization but decreased pro-inflammatory macrophage polarization. Furthermore, mechanism studies showed that TAK1 and its downstream pathway p38/JNK/ERK1/2/p65 were inhibited by minocycline, which led to lower IL-1ß and TNFα expression, but increased IL-10 expression. SIGNIFICANCE: Altogether, these results suggest that minocycline is highly effective against peripheral nerve adhesion through anti-fibrosis, anti-inflammation, and myelination protection, making it a highly promising candidate for treating adhesion-related disorders.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Ativação de Macrófagos/imunologia , Minociclina/farmacologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Neuropatia Ciática/tratamento farmacológico , Aderências Teciduais/prevenção & controle , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , MAP Quinase Quinase Quinases/genética , Ativação de Macrófagos/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/imunologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/imunologia , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia
13.
J Int Med Res ; 49(3): 300060521997588, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33682505

RESUMO

OBJECTIVES: To characterize differences in cardiac structure and function in hemodialysis (HD) patients with diabetic nephropathy (DN) and in those without using echocardiography and to determine their impact on the prediction of mortality using echocardiographic parameters. METHODS: Clinical, laboratory, and echocardiographic data were collected from patients commencing HD. RESULTS: Compared with those without DN, patients with DN had lower peak velocity of the early diastolic wave (e'), larger left atria, and higher peak early diastolic velocity (E)/e' and peak velocity of tricuspid regurgitation (TR). In addition, a larger proportion of DN patients had a combination of left ventricular (LV) diastolic dysfunction, cardiac valve calcification, moderate-to-severe cardiac valve regurgitation (CVR), and at least moderate pericardial effusion (PE). After accounting for age, sex, smoking, hypertension, hemoglobin, and albumin, DN was responsible for e' < 10 cm/s, E/e' >13 m/s, TR >2.8 m/s, LV diastolic dysfunction, CVR, and PE. LV diastolic dysfunction and E/e' >13 were the most useful predictors of mortality in patients with DN. CONCLUSIONS: Patients with DN who undergo HD tend to have worse LV diastolic function and are more likely to have heart valve problems. LV diastolic dysfunction and E/e' are predictors of death in DN patients.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Disfunção Ventricular Esquerda , Diástole , Humanos , Diálise Renal , Disfunção Ventricular Esquerda/diagnóstico por imagem , Função Ventricular Esquerda
14.
J Cell Mol Med ; 25(8): 3754-3764, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33629528

RESUMO

In this study, we aimed to investigate the role of circORC2 in modulating miR-19a and its downstream signalling during the pathogenesis of STC. In this study, three groups of patients, that is healthy control (HC) group, normal transit constipation (NTC) group (N = 42) and slow transit constipation (STC) group, were, respectively, recruited. RT-PCR and Western blot analysis were exploited to investigate the changes in the expression levels of miR-19a and circORC2 in these patients, so as to establish a circORC2/miR-19a signalling pathway. The basic information of the patients showed no significant differences among different patient groups. Compared with the HC group, concentrations of neurotensin (NST) and motilin (MLN) were both significantly reduced in the NTC and STC groups, especially in the STC group. Also, miR-19a level was highest, whereas circORC2 level was lowest in the STC group. Furthermore, circORC2 was validated to sponge the expression of miR-19a, and the transfection of circORC2 reduced the expression of miR-19a. Meanwhile, MLN and NST mRNAs were both targeted by miR-19a, and the transfection of circORC2 dramatically up-regulated the expression of MLN and NST. On the contrary, the transfection of circORC2 siRNA into SMCs and VSMCs exhibited the opposite effect of circORC2. Collectively, the results of this study established a regulatory relationship among circORC2, miR-19a and neurotensin/motilin, which indicated that the overexpression of circORC2 could up-regulate the levels of neurotensin and motilin, thus exerting a beneficial effect during the treatment of STC.


Assuntos
Biomarcadores/metabolismo , Constipação Intestinal/patologia , Regulação da Expressão Gênica , MicroRNAs/genética , Motilina/metabolismo , Neurotensina/metabolismo , RNA Circular/genética , Idoso , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Constipação Intestinal/genética , Constipação Intestinal/metabolismo , Feminino , Humanos , Masculino , Motilina/genética , Neurotensina/genética , Complexo de Reconhecimento de Origem , Prognóstico
15.
Neural Regen Res ; 16(8): 1606-1612, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33433491

RESUMO

In a previous study, we used natural butterfly wings as a cell growth matrix for tissue engineering materials and found that the surface of different butterfly wings had different ultramicrostructures, which can affect the qualitative growth of cells and regulate cell growth, metabolism, and gene expression. However, the biocompatibility and biosafety of butterfly wings must be studied. In this study, we found that Sprague-Dawley rat dorsal root ganglion neurons could grow along the structural stripes of butterfly wings, and Schwann cells could normally attach to and proliferate on different species of butterfly wings. The biocompatibility and biosafety of butterfly wings were further examined through subcutaneous implantation in Sprague-Dawley rats, intraperitoneal injection in Institute of Cancer Research mice, intradermal injection in rabbits, and external application to guinea pigs. Our results showed that butterfly wings did not induce toxicity, and all examined animals exhibited normal behaviors and no symptoms, such as erythema or edema. These findings suggested that butterfly wings possess excellent biocompatibility and biosafety and can be used as a type of tissue engineering material. This study was approved by the Experimental Animal Ethics Committee of Jiangsu Province of China (approval No. 20190303-18) on March 3, 2019.

16.
Neurosci Lett ; 746: 135668, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33497717

RESUMO

OBJECTIVES: This study aims to explore the age-related changes in cerebral cortex activation and functional connectivity (FC) during finger-to-thumb opposition movement based on video games (FTOMBVG). METHODS: A electronic fingercot was developed for FTOMBVG. The oxygenated hemoglobin concentration (Delta [HbO]) signals, measured by functional near-infrared spectroscopy (fNIRS), were recorded from prefrontal cortex (PFC), motor cortex (MC) and occipital lobe (OL) of two groups of subjects (old and young). RESULTS: The cognitive region of the old group showed bilateral activation, while the young group only showed unilateral activation. Both groups showed a wide range of bilateral activation in the motor region. The FC between cognitive region and motor region of the old group was enhanced considerably. CONCLUSION: Changes in cerebral cortex activation and the FC of different brain regions in the old group help explain the decline in cognitive executive and motor control function in the old from the perspective of brain functional structure, and provide a theoretical reference for the prevention of neural diseases caused by aging.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/psicologia , Córtex Cerebral/metabolismo , Dedos/fisiologia , Polegar/fisiologia , Jogos de Vídeo/psicologia , Adulto , Idoso , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/metabolismo , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Jogos de Vídeo/tendências , Adulto Jovem
17.
Mol Neurobiol ; 58(2): 603-616, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32997292

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease caused by a variety of unclear complex pathogenic factors. The 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine/probenecid (MPTP/p)-induced progressive PD mice is a well-recognized classic model for studying PD, but the molecular toxicology of this model is still unclear. Here, for the first time, we report gradual neurodegenerative processes in MPTP/p-induced progressive PD mice model using RNA-seq. Transcriptional responses are orchestrated to regulate the expression of many genes in substantia nigra, such as Ntf3, Pitx3, Th, and Drd2, leading to the degeneration of dopaminergic neurons at last. We proposed that the established model could be divided into three phases based on their molecular toxicological features: "the stress response phase" which maintained the microenvironment homeostasis, "the pre-neurodegenerative phase" which demonstrated observed MPTP/p cytotoxicity and gradual degeneration of dopaminergic neurons, and "the neurodegenerative phase" which reflected distinct damage and dopaminergic neuron apoptotic process. Glia cells exhibited a certain protective effect on dopaminergic neurons in 3rd and 6th MPTP/p-induced cytotoxicity. But in 10th MPTP/p injection, glia cells play a promoting role in PD and tissue damages caused by oxidative stress. This study also indicated that the substantia nigra of PD mice showed unique patterns of changes at each stage. Moreover, neurotrophic signaling pathway, ECM-receptor interaction, oxidative phosphorylation, apoptosis and necroptosis were enriched at 3rd and 6th MPTP/p injection, which might be associated with the PD progress. This study provided an extensive data set of molecular toxicology for elucidating of PD progression and offered comprehensive theoretical knowledge for the development of new therapy.

18.
Glia ; 69(3): 765-778, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33079428

RESUMO

Peripheral nerves connect central nerves with target tissues and organs and execute vital signal transduction functions. Although sub-types of neurons have been defined, the heterogeneity of cell populations in peripheral nerves, especially Schwann cells, has not been well demonstrated. Here, we collected sciatic nerves (SN) and dorsal root ganglia (DRG) from neonatal (1-day old) rats and classified cell populations by high-coverage single-cell sequencing. A total of 10 types of cells, including endothelial cells, erythrocytes, fibroblasts, monocytic cells, neurons, neutrophils, pericytes, satellite cells, Schwann cells, and vascular smooth muscle cells, were identified by transcriptome-based cell typing. The comparisons of cells in neonatal rat SN and DRG revealed distinct atlas in different tissue localizations. Investigations of ligand-receptor interactions showed that there existed direct cell-cell communications between endothelial cells and fibroblasts in SN and among endothelial cells, fibroblasts, and vascular smooth muscle cells in DRG. Schwann cells in neonatal rats were further sub-grouped to four sub-types, including LOC100134871 and Hbb expressing Schwann cell sub-type 1, Cldn19 and Emid1 expressing Schwann cell sub-type 2, Timp3 and Col5a3 expressing Schwann cell sub-type 3, and Cenpf and Mki67 expressing Schwann cell sub-type 4. These Schwann cell sub-types exhibited distinct genetic features and functional enrichments. Collectively, our results illustrated the diversity and cellular complexity of peripheral nerves at the neonatal stage and revealed the heterogeneity of Schwann cells in the peripheral nervous system.

19.
J Neural Eng ; 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33296890

RESUMO

OBJECTIVE: Currently commercially available nerve conduits have demonstrated suboptimal clinical efficacy in repairing peripheral nerve defects. Although tissue-engineered nerve grafts (TENGs) with sustained release of neurotrophic factors (NTFs) are experimentally proved to be more effective than these blank conduits, there remains a lack of clinical translation. NTFs are typically immobilized onto scaffold materials of the conduit via adsorption, specific binding or other incorporation techniques. These scaffold-based delivery strategies increase complexity and cost of conduit fabrication and lack flexibility in choosing different drugs. Therefore, to facilitate clinical translation and commercialization, we construct a TENG using a scaffold-independent drug delivery system (DDS). APPROACH: This study adopted a scaffold-independent DDS based on methoxy-poly (ethylene glycol)-b-poly(γ-ethyl-Lglutamate) (mPEG-PELG) thermosensitive hydrogels that undergo sol-to-gel transition at body temperature. In addition, TENG, a chitosan scaffold filled with nerve growth factor (NGF)-loaded mPEG-PELG that gel in the lumen upon injection during surgery and function as a drug-releasing conduit-filler, was designed. Subsequently, the efficacy of DDS and therapeutic effects of TENG were assessed. MAIN RESULTS: The results demonstrated that NGFloaded mPEG-PELG controllably and sustainably released bioactive NGF for 28 d. When bridging a 10 mm rat sciatic nerve gap, the morphological, electrophysiological, and functional analyses revealed that NGF-releasing TENG (Scaffold + NGF/mPEG-PELG) achieved superior regenerative outcomes compared to plain scaffolds and those combined with systemic delivery of NGF (daily intramuscular injection (IM)), and its effects were relatively similar to autografts. SIGNIFICANCE: This study has proposed a TENG using thermosensitive hydrogels as an injectable implant to controllably release NGF, which has promising therapeutic potential and translatability. Such TENGs obviate the need for conduit modification, complex preloading or binding mediators, therefore they allow the ease of drug switching in clinical practice and greatly simplify the manufacturing process due to the independent preparation of drug delivery system.

20.
Mil Med Res ; 7(1): 54, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172503

RESUMO

Compared with non-degradable materials, biodegradable biomaterials play an increasingly important role in the repairing of severe bone defects, and have attracted extensive attention from researchers. In the treatment of bone defects, scaffolds made of biodegradable materials can provide a crawling bridge for new bone tissue in the gap and a platform for cells and growth factors to play a physiological role, which will eventually be degraded and absorbed in the body and be replaced by the new bone tissue. Traditional biodegradable materials include polymers, ceramics and metals, which have been used in bone defect repairing for many years. Although these materials have more or fewer shortcomings, they are still the cornerstone of our development of a new generation of degradable materials. With the rapid development of modern science and technology, in the twenty-first century, more and more kinds of new biodegradable materials emerge in endlessly, such as new intelligent micro-nano materials and cell-based products. At the same time, there are many new fabrication technologies of improving biodegradable materials, such as modular fabrication, 3D and 4D printing, interface reinforcement and nanotechnology. This review will introduce various kinds of biodegradable materials commonly used in bone defect repairing, especially the newly emerging materials and their fabrication technology in recent years, and look forward to the future research direction, hoping to provide researchers in the field with some inspiration and reference.


Assuntos
Implantes Absorvíveis/normas , Substitutos Ósseos/normas , Implantes Absorvíveis/tendências , Substitutos Ósseos/uso terapêutico , Humanos , Procedimentos Ortopédicos/instrumentação , Procedimentos Ortopédicos/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...