Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Filtros adicionais











Intervalo de ano
1.
Sensors (Basel) ; 19(16)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394850

RESUMO

This paper presents the design and analysis of a new micro-electro-mechanical system (MEMS) tuning fork gyroscope (TFG), which can effectively improve the mechanical sensitivity of the gyroscope sense-mode by the designed leverage mechanism. A micromachined TFG with an anchored leverage mechanism is designed. The dynamics and mechanical sensitivity of the design are theoretically analyzed. The improvement rate of mechanical sensitivity (IRMS) is introduced to represent the optimization effect of the new structure compared with the conventional one. The analytical solutions illustrate that the IRMS monotonically increases with increased stiffness ratio of the power arm (SRPA) but decreases with increased stiffness ratio of the resistance arm (SRRA). Therefore, three types of gyro structures with different stiffness ratios are designed. The mechanical sensitivities increased by 79.10%, 81.33% and 68.06% by theoretical calculation. Additionally, FEM simulation demonstrates that the mechanical sensitivity of the design is in accord with theoretical results. The linearity of design is analyzed, too. Consequently, the proposed new anchored leverage mechanism TFG offers a higher displacement output of sense mode to improve the mechanical sensitivity.

2.
Sensors (Basel) ; 16(7)2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27455272

RESUMO

In this paper, a stiffness match method is proposed to reduce the vibration sensitivity of micromachined tuning fork gyroscopes. Taking advantage of the coordinate transformation method, a theoretical model is established to analyze the anti-phase vibration output caused by the stiffness mismatch due to the fabrication imperfections. The analytical solutions demonstrate that the stiffness mismatch is proportional to the output induced by the external linear vibration from the sense direction in the anti-phase mode frequency. In order to verify the proposed stiffness match method, a tuning fork gyroscope (TFG) with the stiffness match electrodes is designed and implemented using the micromachining technology and the experimental study is carried out. The experimental tests illustrate that the vibration output can be reduced by 73.8% through the stiffness match method than the structure without the stiffness match. Therefore, the proposed stiffness match method is experimentally validated to be applicable to vibration sensitivity reduction in the Micro-Electro-Mechanical-Systems (MEMS) tuning fork gyroscopes without sacrificing the scale factor.

3.
Sensors (Basel) ; 16(4): 468, 2016 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-27049385

RESUMO

In this paper, a new micromachined tuning fork gyroscope (TFG) with an anchored diamond coupling mechanism is proposed while the mode ordering and the vibration sensitivity are also investigated. The sense-mode of the proposed TFG was optimized through use of an anchored diamond coupling spring, which enables the in-phase mode frequency to be 108.3% higher than the anti-phase one. The frequencies of the in- and anti-phase modes in the sense direction are 9799.6 Hz and 4705.3 Hz, respectively. The analytical solutions illustrate that the stiffness difference ratio of the in- and anti-phase modes is inversely proportional to the output induced by the vibration from the sense direction. Additionally, FEM simulations demonstrate that the stiffness difference ratio of the anchored diamond coupling TFG is 16.08 times larger than the direct coupling one while the vibration output is reduced by 94.1%. Consequently, the proposed new anchored diamond coupling TFG can structurally increase the stiffness difference ratio to improve the mode ordering and considerably reduce the vibration sensitivity without sacrificing the scale factor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA