Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 6(Pt 5): 884-894, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576221

RESUMO

The present work reports on the charge and spin density modelling of YTiO3 in its ferromagnetic state (T C = 27 K). Accurate polarized neutron diffraction and high-resolution X-ray diffraction (XRD) experiments were carried out on a single crystal at the ORPHÉE reactor (LLB) and SPRING8 synchrotron source. The experimental data are modelled by the spin resolved pseudo-atomic multipolar model (Deutsch et al., 2012 ▸). The refinement strategy is discussed and the result of this electron density modelling is compared with that from XRD measured at 100 K and with density functional theory calculations. The results show that the spin and charge densities around the Ti atom have lobes directed away from the O atoms, confirming the filling of the t 2g orbitals of the Ti atom. The d xy orbital is less populated than d xz and d yz , which is a sign of a partial lift of degeneracy of the t 2g orbitals. This study confirms the orbital ordering at low temperature (20 K), which is already present in the paramagnetic state above the ferromagnetic transition (100 K).

2.
J Chem Phys ; 148(16): 164106, 2018 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-29716230

RESUMO

In this paper, we propose a simple cluster model with limited basis sets to reproduce the unpaired electron distributions in a YTiO3 ferromagnetic crystal. The spin-resolved one-electron-reduced density matrix is reconstructed simultaneously from theoretical magnetic structure factors and directional magnetic Compton profiles using our joint refinement algorithm. This algorithm is guided by the rescaling of basis functions and the adjustment of the spin population matrix. The resulting spin electron density in both position and momentum spaces from the joint refinement model is in agreement with theoretical and experimental results. Benefits brought from magnetic Compton profiles to the entire spin density matrix are illustrated. We studied the magnetic properties of the YTiO3 crystal along the Ti-O1-Ti bonding. We found that the basis functions are mostly rescaled by means of magnetic Compton profiles, while the molecular occupation numbers are mainly modified by the magnetic structure factors.

3.
Acta Crystallogr A Found Adv ; 74(Pt 2): 131-142, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29493542

RESUMO

The paper describes a joint refinement model of the spin-resolved one-electron reduced density matrix using simultaneously magnetic structure factors and magnetic directional Compton profiles. The model is guided by two strategies: (i) variation of basis functions and (ii) variation of the spin population matrix. The implementation for a finite system is based on an expansion of the natural orbitals on basis sets. To show the potential benefits brought by the joint refinement model, the paper also presents the refinement results using magnetic structure factors only. The joint refinement model provides very satisfactory results reproducing the pseudo-data. In particular, magnetic Compton profiles have a strong effect not only on the off-diagonal elements of the spin-resolved one-electron reduced density matrix but also on its diagonal elements.

4.
J Phys Chem Lett ; 7(5): 900-4, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26895075

RESUMO

The properties of Fe(1,10-phenanthroline)2(NCS)2 (Fe-phen) molecules deposited on Co/Cu(111) are studied with scanning tunneling microscopy (STM) operated in ultrahigh vacuum at low temperature (4 K) and ab initio calculations. Both the experimental and theoretical results are used to identify the high-spin (HS) state of Fe-phen. Additionally, the calculations reveal a strong spin-polarization of the density of states (DOS) and is validated experimentally using the spin sensitivity of spin-polarized STM. Finally, it is shown that the magnetic moment of the Fe-ion within HS Fe-phen is strongly magnetically coupled to the underlying magnetic Co through the NCS groups. These findings enable promising spintronic perspectives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA