Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34444564

RESUMO

During operational activities, military personnel face extremely demanding circumstances, which when combined lead to severe fatigue, influencing both their well-being and performance. Physical exertion is the main condition leading to fatigue, and its continuous tracking would help prevent its effects. This review aimed to investigate the up-to-date progress on non-invasive physiological monitoring to evaluate situations of physical exertion as a pre-condition to fatigue in military populations, and determine the potential associations between physiological responses and fatigue, which can later result in decision-making indicators to prevent health-related consequences. Adhering to the PRISMA Statement, four databases (Scopus, Science Direct, Web of Science and PubMed) were used for a literature search based on combinations of keywords. The eligibility criteria focused on studies monitoring physiological variables through non-invasive objective measurements, with these measurements being developed in military field, combat, or training conditions. The review process led to the inclusion of 20 studies. The findings established the importance of multivariable assessments in a real-life context to accurately characterise the effects of military practices. A tendency for examining heart rate variables, thermal responses, and actigraphy measurements was also identified. The objectives and experimental protocols were diverse, but the effectiveness of non-invasive measurements in identifying the most fatigue-inducing periods was demonstrated. Nevertheless, no assessment system for standardised application was presented. Future work may include the development of assessment methods to translate physiological recordings into actionable information in real-time and mitigate the effects of fatigue on soldiers' performance accurately.


Assuntos
Militares , Fadiga , Humanos , Monitorização Fisiológica , Esforço Físico
2.
J Biomater Appl ; 28(1): 3-11, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22935537

RESUMO

Scalable expansion of cells for regenerative cell therapy or to produce large quantities for high-throughput screening remains a challenge for bioprocess engineers. Laboratory scale cell expansion using t-flasks requires frequent passaging that exposes cells to many poorly defined bioprocess forces that can cause damage or alter their phenotype. Microcarriers offer a potential solution to scalable production, lending themselves to cell culture processes more akin to fermentation, removing the need for frequent passaging throughout the expansion period. One main problem with microcarrier expansion, however, is the difficulty in harvesting cells at the end of the process. Therefore, therapies that rely on cell delivery using biomaterial scaffolds could benefit from a microcarrier expansion system whereby the cells and microcarriers are transplanted together. In the current study, we used bioactive glass microcarriers doped with 5% TiO2 that display a controlled rate of degradation and conducted experiments to assess biocompatibility and growth of primary fibroblast cells as a model for cell therapy products. We found that the microcarriers are highly biocompatible and facilitate cell growth in a gradual controlled manner. Therefore, even without additional biofunctionalization methods, Ti-doped bioactive glass microcarriers offer potential as a cell expansion platform.


Assuntos
Materiais Biocompatíveis , Vidro , Titânio , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/fisiologia , Teste de Materiais , Camundongos , Microscopia Eletrônica de Varredura , Microesferas , Fosfatos , Engenharia Tecidual , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...