Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 59(8): 472-483, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32259323

RESUMO

Renal medullary carcinoma (RMC) is a rare, aggressive disease that predominantly afflicts individuals of African or Mediterranean descent with sickle cell trait. RMC comprises 1% of all renal cell carcinoma diagnoses with a median overall survival of 13 months. Patients are typically young (median age-22) and male (male:female ratio of 2:1) and tumors are characterized by complete loss of expression of the SMARCB1 tumor suppressor protein. Due to the low incidence of RMC and the disease's aggressiveness, treatment decisions are often based on case reports. Thus, it is critical to develop preclinical models of RMC to better understand the pathogenesis of this disease and to identify effective forms of therapy. Two novel cell line models, UOK353 and UOK360, were derived from primary RMCs that both demonstrated the characteristic SMARCB1 loss. Both cell lines overexpressed EZH2 and other members of the polycomb repressive complex and EZH2 inhibition in RMC tumor spheroids resulted in decreased viability. High throughput drug screening of both cell lines revealed several additional candidate compounds, including bortezomib that had both in vitro and in vivo antitumor activity. The activity of bortezomib was shown to be partially dependent on increased oxidative stress as addition of the N-acetyl cysteine antioxidant reduced the effect on cell proliferation. Combining bortezomib and cisplatin further decreased cell viability both in vitro and in vivo that single agent bortezomib treatment. The UOK353 and UOK360 cell lines represent novel preclinical models for the development of effective forms of therapy for RMC patients.

2.
SLAS Discov ; 25(1): 9-20, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498718

RESUMO

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.

3.
Sci Transl Med ; 11(519)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748226

RESUMO

Diffuse midline gliomas (DMGs) are universally lethal malignancies occurring chiefly during childhood and involving midline structures of the central nervous system, including thalamus, pons, and spinal cord. These molecularly related cancers are characterized by high prevalence of the histone H3K27M mutation. In search of effective therapeutic options, we examined multiple DMG cultures in sequential quantitative high-throughput screens (HTS) of 2706 approved and investigational drugs. This effort generated 19,936 single-agent dose responses that inspired a series of HTS-enabled drug combination assessments encompassing 9195 drug-drug examinations. Top combinations were validated across patient-derived cell cultures representing the major DMG genotypes. In vivo testing in patient-derived xenograft models validated the combination of the multi-histone deacetylase (HDAC) inhibitor panobinostat and the proteasome inhibitor marizomib as a promising therapeutic approach. Transcriptional and metabolomic surveys revealed substantial alterations to key metabolic processes and the cellular unfolded protein response after treatment with panobinostat and marizomib. Mitigation of drug-induced cytotoxicity and basal mitochondrial respiration with exogenous application of nicotinamide mononucleotide (NMN) or exacerbation of these phenotypes when blocking nicotinamide adenine dinucleotide (NAD+) production via nicotinamide phosphoribosyltransferase (NAMPT) inhibition demonstrated that metabolic catastrophe drives the combination-induced cytotoxicity. This study provides a comprehensive single-agent and combinatorial drug screen for DMG and identifies concomitant HDAC and proteasome inhibition as a promising therapeutic strategy that underscores underrecognized metabolic vulnerabilities in DMG.

4.
J Chem Inf Model ; 59(11): 4880-4892, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31532656

RESUMO

We present a method for visualizing and navigating large screening datasets while also taking into account their activities and properties. Our approach is to annotate the data with all possible scaffolds contained within each molecule. We have developed a Spotfire visualization, coupled to a fuzzy clustering approach based on the scaffold decomposition of the screening deck, used to drive the hit triage process. Progression decisions can be made using aggregate scaffold parameters and data from multiple datasets merged at the scaffold level. This visualization reveals overlaps that help prioritize hits, highlight tractable series, and posit ways to combine aspects of multiple hits. The structure-activity relationship of a large and complex hit is automatically mapped onto all constituent scaffolds making it possible to navigate, via any shared scaffold, to all related hits. This scaffold "walking" helps address bias toward a handful of potent and ligand-efficient molecules at the expense of coverage of chemical space. We consider two scaffold generation methods and explored their similarities and differences both qualitatively and quantitatively. The workflow of a Spotfire visualization used in combination with fuzzy clustering and structure annotation provides an intuitive view of large and diverse screening datasets. This allows teams to effortlessly navigate between structurally related molecules and enriches the population of leads considered and progressed in a manner complementary to established approaches.

5.
Mol Pharmacol ; 96(5): 629-640, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31515284

RESUMO

The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to limit both brain penetration and oral bioavailability of many chemotherapy drugs. Although US Food and Drug Administration guidelines require that potential interactions of investigational drugs with P-gp be explored, often this information does not enter the literature. In response, we developed a high-throughput screen to identify substrates of P-gp from a series of chemical libraries, testing a total of 10,804 compounds, most of which have known mechanisms of action. We used the CellTiter-Glo viability assay to test library compounds against parental KB-3-1 human cervical adenocarcinoma cells and the colchicine-selected subline KB-8-5-11 that overexpresses P-gp. KB-8-5-11 cells were also tested in the presence of a P-gp inhibitor (tariquidar) to assess reversibility of transporter-mediated resistance. Of the tested compounds, a total of 90 P-gp substrates were identified, including 55 newly identified compounds. Substrates were confirmed using an orthogonal killing assay against human embryonic kidney-293 cells overexpressing P-gp. We confirmed that AT7159 (cyclin-dependent kinase inhibitor), AT9283, (Janus kinase 2/3 inhibitor), ispinesib (kinesin spindle protein inhibitor), gedatolisib (PKI-587, phosphoinositide 3-kinase/mammalian target of rampamycin inhibitor), GSK-690693 (AKT inhibitor), and KW-2478 (heat-shock protein 90 inhibitor) were substrates. In addition, we assessed direct ATPase stimulation. ABCG2 was also found to confer high levels of resistance to AT9283, GSK-690693, and gedatolisib, whereas ispinesib, AT7519, and KW-2478 were weaker substrates. Combinations of P-gp substrates and inhibitors were assessed to demonstrate on-target synergistic cell killing. These data identified compounds whose oral bioavailability or brain penetration may be affected by P-gp. SIGNIFICANCE STATEMENT: The ATP-binding cassette transporter P-glycoprotein (P-gp) is known to be expressed at barrier sites, where it acts to limit oral bioavailability and brain penetration of substrates. In order to identify novel compounds that are transported by P-gp, we developed a high-throughput screen using the KB-3-1 cancer cell line and its colchicine-selected subline KB-8-5-11. We screened the Mechanism Interrogation Plate (MIPE) library, the National Center for Advancing Translational Science (NCATS) pharmaceutical collection (NPC), the NCATS Pharmacologically Active Chemical Toolbox (NPACT), and a kinase inhibitor library comprising 977 compounds, for a total of 10,804 compounds. Of the 10,804 compounds screened, a total of 90 substrates were identified of which 55 were novel. P-gp expression may adversely affect the oral bioavailability or brain penetration of these compounds.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Citotoxinas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Neoplasias/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Citotoxinas/química , Citotoxinas/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Células HeLa , Humanos , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia
6.
Mol Cancer Ther ; 18(11): 2097-2110, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31395684

RESUMO

Pancreatic cancer remains an incurable condition. Its progression is driven, in part, by subsets of cancer cells that evade the cytotoxic effects of conventional chemotherapies. These cells are often low-cycling, multidrug resistant, and adopt a stem cell-like phenotype consistent with the concept of cancer stem cells (CSC). To identify drugs impacting on tumor-promoting CSCs, we performed a differential high-throughput drug screen in pancreatic cancer cells cultured in traditional (2D) monolayers versus three-dimensional (3D) spheroids which replicate key elements of the CSC model. Among the agents capable of killing cells cultured in both formats was a 1H-benzo[d]imidazol-2-amine-based inhibitor of IL2-inducible T-cell kinase (ITK; NCGC00188382, inhibitor #1) that effectively mediated growth inhibition and induction of apoptosis in vitro, and suppressed cancer progression and metastasis formation in vivo An examination of this agent's polypharmacology via in vitro and in situ phosphoproteomic profiling demonstrated an activity profile enriched for mediators involved in DNA damage repair. Included was a strong inhibitory potential versus the thousand-and-one amino acid kinase 3 (TAOK3), CDK7, and aurora B kinases. We found that cells grown under CSC-enriching spheroid conditions are selectively dependent on TAOK3 signaling. Loss of TAOK3 decreases colony formation, expression of stem cell markers, and sensitizes spheroids to the genotoxic effect of gemcitabine, whereas overexpression of TAOK3 increases stem cell traits including tumor initiation and metastasis formation. By inactivating multiple components of the cell-cycle machinery in concert with the downregulation of key CSC signatures, inhibitor #1 defines a distinctive strategy for targeting pancreatic cancer cell populations.

7.
Papillomavirus Res ; 8: 100181, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31446060

RESUMO

Recurrent respiratory papillomatosis (RRP) is a benign neoplasm of the larynx caused mainly by human papillomavirus type 6 or 11 and its standard treatment involves repeated surgical debulking of the laryngeal tumors. However, significant morbidity and occasional mortality due to multiple recurrences occur. Conditional reprogramming (CR) was used to establish a HPV-6 positive culture from an RRP patient, named GUMC-403. High-throughput screening was performed at the National Center for Advanced Technology (NCATS) to identify potential drugs to treat this rare but morbid disease. GUMC-403 cells were screened against the NPC library of >2800 approved drugs and the MIPE library of >1900 investigational drugs to identify new uses for FDA-approved drugs or drugs that have undergone significant research and development. From the two libraries, we identified a total of 13 drugs that induced significant cytotoxicity in RRP cells at IC50 values that were clinically achievable. We validated the efficacy of the drugs in vitro using CR 2D and 3D models and further refined our list of drugs to panobinostat, dinaciclib and forskolin as potential therapies for RRP patients.


Assuntos
Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Infecções por Papillomavirus/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Animais , Biópsia , Técnicas de Cultura de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Relação Dose-Resposta a Droga , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Papillomavirus Humano 6/fisiologia , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/etiologia , Infecções por Papillomavirus/virologia , Infecções Respiratórias/etiologia
8.
ACS Nano ; 13(8): 8946-8956, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31291087

RESUMO

The cellular cytoplasm is crowded with macromolecules and other species that occupy up to 40% of the available volume. Previous studies have reported that for high crowder molecule concentrations, colloidal tracer particles have a dampened diffusion due to the higher solution viscosity. However, these studies employed uniform distributions of crowder molecules. We report a scenario, previously unexplored experimentally, of increased tracer transport driven by a nonuniform concentration of crowder macromolecules. In gradients of a polymeric crowder, tracer particles undergo transport several times higher than that of their bulk diffusion rate. The direction of the transport is toward regions of lower crowder concentration. Mechanistically, hard-sphere interactions and the resulting volume exclusion between the tracer and crowder increase the effective diffusion by inducing a convective motion of tracers, which we explain through modeling. Strikingly, soft deformable particles show even greater enhancement in transport in crowder gradients compared to similarly sized hard particles. Overall, this demonstration of enhanced transport in nonuniform distributions of crowders is anticipated to clarify aspects of multicomponent intracellular transport.

9.
J Cheminform ; 11(1): 44, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31281945
10.
Front Pharmacol ; 10: 445, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133849

RESUMO

Chemical genomics aims to comprehensively define, and ultimately predict, the effects of small molecule compounds on biological systems. Chemical activity profiling approaches must consider chemical effects on all pathways operative in mammalian cells. To enable a strategic and maximally efficient chemical profiling of pathway space, we have created the NCATS BioPlanet, a comprehensive integrated pathway resource that incorporates the universe of 1,658 human pathways sourced from publicly available, manually curated sources, which have been subjected to thorough redundancy and consistency cross-evaluation. BioPlanet supports interactive browsing, retrieval, and analysis of pathways, exploration of pathway connections, and pathway search by gene targets, category, and availability of corresponding bioactivity assay, as well as visualization of pathways on a 3-dimensional globe, in which the distance between any two pathways is proportional to their degree of gene component overlap. Using this resource, we propose a strategy to identify a minimal set of 362 biological assays that can interrogate the universe of human pathways. The NCATS BioPlanet is a public resource, which will be continually expanded and updated, for systems biology, toxicology, and chemical genomics, available at http://tripod.nih.gov/bioplanet/.

11.
Clin Cancer Res ; 25(14): 4552-4566, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30979745

RESUMO

PURPOSE: Ewing sarcoma is an aggressive solid tumor malignancy of childhood. Although current treatment regimens cure approximately 70% of patients with localized disease, they are ineffective for most patients with metastases or relapse. New treatment combinations are necessary for these patients. EXPERIMENTAL DESIGN: Ewing sarcoma cells are dependent on focal adhesion kinase (FAK) for growth. To identify candidate treatment combinations for Ewing sarcoma, we performed a small-molecule library screen to identify compounds synergistic with FAK inhibitors in impairing Ewing cell growth. The activity of a top-scoring class of compounds was then validated across multiple Ewing cell lines in vitro and in multiple xenograft models of Ewing sarcoma. RESULTS: Numerous Aurora kinase inhibitors scored as synergistic with FAK inhibition in this screen. We found that Aurora kinase B inhibitors were synergistic across a larger range of concentrations than Aurora kinase A inhibitors when combined with FAK inhibitors in multiple Ewing cell lines. The combination of AZD-1152, an Aurora kinase B-selective inhibitor, and PF-562271 or VS-4718, FAK-selective inhibitors, induced apoptosis in Ewing sarcoma cells at concentrations that had minimal effects on survival when cells were treated with either drug alone. We also found that the combination significantly impaired tumor progression in multiple xenograft models of Ewing sarcoma. CONCLUSIONS: FAK and Aurora kinase B inhibitors synergistically impair Ewing sarcoma cell viability and significantly inhibit tumor progression. This study provides preclinical support for the consideration of a clinical trial testing the safety and efficacy of this combination for patients with Ewing sarcoma.

12.
Methods Mol Biol ; 1939: 11-35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30848454

RESUMO

The identification of drug combinations as alternatives to single-agent therapeutics has traditionally been a slow, largely manual process. In the last 10 years, high-throughput screening platforms have been developed that enable routine screening of thousands of drug pairs in an in vitro setting. In this chapter, we describe the workflow involved in screening a single agent versus a library of mechanistically annotated, investigation, and approved drugs using a full dose-response matrix scheme using viability as the readout. We provide details of the automation required to run the screen and the informatics required to process data from screening robot and subsequent analysis and visualization of the datasets.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Acústica/instrumentação , Animais , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos/instrumentação , Desenho de Equipamento , Ensaios de Triagem em Larga Escala/instrumentação , Humanos , Software , Fluxo de Trabalho
13.
J Cheminform ; 11(1): 12, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30719588
14.
Hepatology ; 70(2): 563-576, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30353932

RESUMO

Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death in the world. Therapeutic outcomes of HCC remain unsatisfactory, and novel treatments are urgently needed. GPC3 (glypican-3) is an emerging target for HCC, given the findings that 1) GPC3 is highly expressed in more than 70% of HCC; (2) elevated GPC3 expression is linked with poor HCC prognosis; and (3) GPC3-specific therapeutics, including immunotoxin, bispecific antibody and chimeric antigen receptor T cells. have shown promising results. Here, we postulate that GPC3 is a potential target of antibody-drug conjugates (ADCs) for treating liver cancer. To determine the payload for ADCs against liver cancer, we screened three large drug libraries (> 9,000 compounds) against HCC cell lines and found that the most potent drugs are DNA-damaging agents. Duocarmycin SA and pyrrolobenzodiazepine dimer were chosen as the payloads to construct two GPC3-specific ADCs: hYP7-DC and hYP7-PC. Both ADCs showed potency at picomolar concentrations against a panel of GPC3-positive cancer cell lines, but not GPC3 negative cell lines. To improve potency, we investigated the synergetic effect of hYP7-DC with approved drugs. Gemcitabine showed a synergetic effect with hYP7-DC in vitro and in vivo. Furthermore, single treatment of hYP7-PC induced tumor regression in multiple mouse models. Conclusion: We provide an example of an ADC targeting GPC3, suggesting a strategy for liver cancer therapy.

15.
SLAS Technol ; 24(1): 28-40, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30289729

RESUMO

Glioblastoma (GBM) is a lethal brain cancer with a median survival time of approximately 15 months following treatment. Common in vitro GBM models for drug screening are adherent and do not recapitulate the features of human GBM in vivo. Here we report the genomic characterization of nine patient-derived, spheroid GBM cell lines that recapitulate human GBM characteristics in orthotopic xenograft models. Genomic sequencing revealed that the spheroid lines contain alterations in GBM driver genes such as PTEN, CDKN2A, and NF1. Two spheroid cell lines, JHH-136 and JHH-520, were utilized in a high-throughput drug screen for cell viability using a 1912-member compound library. Drug mechanisms that were cytotoxic in both cell lines were Hsp90 and proteasome inhibitors. JHH-136 was uniquely sensitive to topoisomerase 1 inhibitors, while JHH-520 was uniquely sensitive to Mek inhibitors. Drug combination screening revealed that PI3 kinase inhibitors combined with Mek or proteasome inhibitors were synergistic. However, animal studies to test these drug combinations in vivo revealed that Mek inhibition alone was superior to the combination treatments. These data show that these GBM spheroid lines are amenable to high-throughput drug screening and that this dataset may deliver promising therapeutic leads for future GBM preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glioblastoma/patologia , Mutação , Esferoides Celulares/efeitos dos fármacos , Antineoplásicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Células Tumorais Cultivadas
16.
Clin Cancer Res ; 25(4): 1343-1357, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30397176

RESUMO

PURPOSE: Novel targeted therapeutics have transformed the care of subsets of patients with cancer. In pediatric malignancies, however, with simple tumor genomes and infrequent targetable mutations, there have been few new FDA-approved targeted drugs. The cyclin-dependent kinase (CDK)4/6 pathway recently emerged as a dependency in Ewing sarcoma. Given the heightened efficacy of this class with targeted drug combinations in other cancers, as well as the propensity of resistance to emerge with single agents, we aimed to identify genes mediating resistance to CDK4/6 inhibitors and biologically relevant combinations for use with CDK4/6 inhibitors in Ewing. EXPERIMENTAL DESIGN: We performed a genome-scale open reading frame (ORF) screen in 2 Ewing cell lines sensitive to CDK4/6 inhibitors to identify genes conferring resistance. Concurrently, we established resistance to a CDK4/6 inhibitor in a Ewing cell line. RESULTS: The ORF screen revealed IGF1R as a gene whose overexpression promoted drug escape. We also found elevated levels of phospho-IGF1R in our resistant Ewing cell line, supporting the relevance of IGF1R signaling to acquired resistance. In a small-molecule screen, an IGF1R inhibitor scored as synergistic with CDK4/6 inhibitor treatment. The combination of CDK4/6 inhibitors and IGF1R inhibitors was synergistic in vitro and active in mouse models. Mechanistically, this combination more profoundly repressed cell cycle and PI3K/mTOR signaling than either single drug perturbation. CONCLUSIONS: Taken together, these results suggest that IGF1R inhibitors activation is an escape mechanism to CDK4/6 inhibitors in Ewing sarcoma and that dual targeting of CDK4/6 inhibitors and IGF1R inhibitors provides a candidate synergistic combination for clinical application in this disease.


Assuntos
Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Receptor IGF Tipo 1/genética , Sarcoma de Ewing/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Cell ; 34(6): 922-938.e7, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30537514

RESUMO

Drug resistance represents a major challenge to achieving durable responses to cancer therapeutics. Resistance mechanisms to epigenetically targeted drugs remain largely unexplored. We used bromodomain and extra-terminal domain (BET) inhibition in neuroblastoma as a prototype to model resistance to chromatin modulatory therapeutics. Genome-scale, pooled lentiviral open reading frame (ORF) and CRISPR knockout rescue screens nominated the phosphatidylinositol 3-kinase (PI3K) pathway as promoting resistance to BET inhibition. Transcriptomic and chromatin profiling of resistant cells revealed that global enhancer remodeling is associated with upregulation of receptor tyrosine kinases (RTKs), activation of PI3K signaling, and vulnerability to RTK/PI3K inhibition. Large-scale combinatorial screening with BET inhibitors identified PI3K inhibitors among the most synergistic upfront combinations. These studies provide a roadmap to elucidate resistance to epigenetic-targeted therapeutics and inform efficacious combination therapies.


Assuntos
Azepinas/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Indazóis/farmacologia , Terapia de Alvo Molecular/métodos , Neuroblastoma/tratamento farmacológico , Sulfonamidas/farmacologia , Triazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Intervalo Livre de Doença , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Camundongos Nus , Neuroblastoma/genética , Neuroblastoma/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas/antagonistas & inibidores , Proteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Sci Rep ; 8(1): 17239, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467317

RESUMO

The development of new treatments for castrate resistant prostate cancer (CRPC) must address such challenges as intrinsic tumor heterogeneity and phenotypic plasticity. Combined PTEN/TP53 alterations represent a major genotype of CRPC (25-30%) and are associated with poor outcomes. Using tumor-derived, castration-resistant Pten/Tp53 null luminal prostate cells for comprehensive, high-throughput, mechanism-based screening, we identified several vulnerabilities among >1900 compounds, including inhibitors of: PI3K/AKT/mTOR, the proteasome, the cell cycle, heat shock proteins, DNA repair, NFκB, MAPK, and epigenetic modifiers. HSP90 inhibitors were one of the most active compound classes in the screen and have clinical potential for use in drug combinations to enhance efficacy and delay the development of resistance. To inform future design of rational drug combinations, we tested ganetespib, a potent second-generation HSP90 inhibitor, as a single agent in multiple CRPC genotypes and phenotypes. Ganetespib decreased growth of endogenous Pten/Tp53 null tumors, confirming therapeutic activity in situ. Fifteen human CRPC LuCaP PDX-derived organoid models were assayed for responses to 110 drugs, and HSP90 inhibitors (ganetespib and onalespib) were among the select group of drugs (<10%) that demonstrated broad activity (>75% of models) at high potency (IC50 <1 µM). Ganetespib inhibits multiple targets, including AR and PI3K pathways, which regulate mutually compensatory growth and survival signals in some forms of CRPC. Combined with castration, ganetespib displayed deeper PDX tumor regressions and delayed castration resistance relative to either monotherapy. In all, comprehensive data from near-patient models presents novel contexts for HSP90 inhibition in multiple CRPC genotypes and phenotypes, expands upon HSP90 inhibitors as simultaneous inhibitors of oncogenic signaling and resistance mechanisms, and suggests utility for combined HSP90/AR inhibition in CRPC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Antagonistas de Receptores de Andrógenos/farmacologia , Animais , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Genótipo , Ensaios de Triagem em Larga Escala/métodos , Humanos , Isoindóis/farmacologia , Masculino , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/efeitos dos fármacos , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Triazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Malar J ; 17(1): 391, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367653

RESUMO

BACKGROUND: Artemisinin-resistant Plasmodium falciparum has been reported throughout the Greater Mekong subregion and threatens to disrupt current malaria control efforts worldwide. Polymorphisms in kelch13 have been associated with clinical and in vitro resistance phenotypes; however, several studies suggest that the genetic determinants of resistance may involve multiple genes. Current proposed mechanisms of resistance conferred by polymorphisms in kelch13 hint at a connection to an autophagy-like pathway in P. falciparum. RESULTS: A SNP in autophagy-related gene 18 (atg18) was associated with long parasite clearance half-life in patients following artemisinin-based combination therapy. This gene encodes PfAtg18, which is shown to be similar to the mammalian/yeast homologue WIPI/Atg18 in terms of structure, binding abilities, and ability to form puncta in response to stress. To investigate the contribution of this polymorphism, the atg18 gene was edited using CRISPR/Cas9 to introduce a T38I mutation into a k13-edited Dd2 parasite. The presence of this SNP confers a fitness advantage by enabling parasites to grow faster in nutrient-limited settings. The mutant and parent parasites were screened against drug libraries of 6349 unique compounds. While the SNP did not modulate the parasite's susceptibility to any of the anti-malarial compounds using a 72-h drug pulse, it did alter the parasite's susceptibility to 227 other compounds. CONCLUSIONS: These results suggest that the atg18 T38I polymorphism may provide additional resistance against artemisinin derivatives, but not partner drugs, even in the absence of kelch13 mutations, and may also be important in parasite survival during nutrient deprivation.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Proteínas Relacionadas à Autofagia/genética , Resistência a Medicamentos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Proteínas Relacionadas à Autofagia/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Alinhamento de Sequência
20.
Front Pharmacol ; 9: 1096, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333748

RESUMO

The parasite Plasmodium falciparum is the most lethal species of Plasmodium to cause serious malaria infection in humans, and with resistance developing rapidly novel treatment modalities are currently being sought, one of which being combinations of existing compounds. The discovery of combinations of antimalarial drugs that act synergistically with one another is hence of great importance; however an exhaustive experimental screen of large drug space in a pairwise manner is not an option. In this study we apply our machine learning approach, Combination Synergy Estimation (CoSynE), which can predict novel synergistic drug interactions using only prior experimental combination screening data and knowledge of compound molecular structures, to a dataset of 1,540 antimalarial drug combinations in which 22.2% were synergistic. Cross validation of our model showed that synergistic CoSynE predictions are enriched 2.74 × compared to random selection when both compounds in a predicted combination are known from other combinations among the training data, 2.36 × when only one compound is known from the training data, and 1.5 × for entirely novel combinations. We prospectively validated our model by making predictions for 185 combinations of 23 entirely novel compounds. CoSynE predicted 20 combinations to be synergistic, which was experimentally validated for nine of them (45%), corresponding to an enrichment of 1.70 × compared to random selection from this prospective data set. Such enrichment corresponds to a 41% reduction in experimental effort. Interestingly, we found that pairwise screening of the compounds CoSynE individually predicted to be synergistic would result in an enrichment of 1.36 × compared to random selection, indicating that synergy among compound combinations is not a random event. The nine novel and correctly predicted synergistic compound combinations mainly (where sufficient bioactivity information is available) consist of efflux or transporter inhibitors (such as hydroxyzine), combined with compounds exhibiting antimalarial activity alone (such as sorafenib, apicidin, or dihydroergotamine). However, not all compound synergies could be rationalized easily in this way. Overall, this study highlights the potential for predictive modeling to expedite the discovery of novel drug combinations in fight against antimalarial resistance, while the underlying approach is also generally applicable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA